Initial commit

OpenGL boilerplate by Benoit Ozell
Packets code taken from https://github.com/jeschke/water-wave-packets
This commit is contained in:
lhark 2017-11-25 16:18:26 -05:00
commit b57310b38c
10 changed files with 5856 additions and 0 deletions

1264
Packets.cpp Normal file

File diff suppressed because it is too large Load diff

147
Packets.h Normal file
View file

@ -0,0 +1,147 @@
// Taken from https://github.com/jeschke/water-wave-packets
#pragma once
#include "constants.h"
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
// simulation parameters
#define PACKET_SPLIT_ANGLE 0.95105f // direction angle variation threshold: 0.95105=18 degree
#define PACKET_SPLIT_DISPERSION 0.3f // if the fastest wave in a packet traveled PACKET_SPLIT_DISPERSION*Envelopesize ahead, or the slowest by the same amount behind, subdivide this packet into two wavelength intervals
#define PACKET_KILL_AMPLITUDE_DERIV 0.0001f // waves below this maximum amplitude derivative gets killed
#define PACKET_BLEND_TRAVEL_FACTOR 1.0f // in order to be fully blended (appear or disappear), any wave must travel PACKET_BLEND_TRAVEL_FACTOR times "envelope size" in space (1.0 is standard)
#define PACKET_ENVELOPE_SIZE_FACTOR 3.0f // size of the envelope relative to wavelength (determines how many "bumps" appear)
#define PACKET_ENVELOPE_MINSIZE 0.02f // minimum envelope size in meters (smallest expected feature)
#define PACKET_ENVELOPE_MAXSIZE 10.0f // maximum envelope size in meters (largest expected feature)
#define PACKET_BOUNCE_FREQSPLIT true // (boolean) should a wave packet produce smaller waves at a bounce/reflection (->widen the wavelength interval of this packet)?
#define PACKET_BOUNCE_FREQSPLIT_K 31.4f // if k_L is smaller than this value (lambda = 20cm), the wave is (potentially) split after a bounce
#define MAX_SPEEDNESS 0.07f // all wave amplitudes a are limited to a <= MAX_SPEEDNESS*2.0*M_PI/k
// physical parameters
#define SIGMA 0.074f // surface tension N/m at 20 grad celsius
#define GRAVITY 9.81f // GRAVITY m/s^2
#define DENSITY 998.2071f // water density at 20 degree celsius
#define KINEMATIC_VISCOSITY 0.0000089f // kinematic viscosity
#define PACKET_SLOWAVE_K 143.1405792f // k of the slowest possible wave packet
#define PACKET_SLOWAVE_W0 40.2646141f // w_0 of the slowest possible wave packet
// memory management
#define PACKET_BUFFER_DELTA 500000 // initial number of vertices, packet memory will be increased on demand by this stepsize
struct WAVE_PACKET
{
// positions, directions, speed of the tracked vertices
Vector2f pos1,pos2,pos3; // 2D position
Vector2f dir1,dir2,dir3; // current movement direction
float speed1,speed2,speed3; // speed of the particle
Vector2f pOld1,pOld2,pOld3; // position in last timestep (needed to handle bouncing)
Vector2f dOld1,dOld2,dOld3; // direction in last timestep (needed to handle bouncing)
float sOld1,sOld2,sOld3; // speed in last timestep (needed to handle bouncing)
Vector2f midPos; // middle position (tracked each timestep, used for rendering)
Vector2f travelDir; // travel direction (tracked each timestep, used for rendering)
float bending; // point used for circular arc bending of the wave function inside envelope
// bouncing and sliding
bool bounced1, bounced2, bounced3; // indicates if this vertex bounced in this timestep
bool sliding3; // indicates if the 3rd vertex is "sliding" (used for diffraction)
bool use3rd; // indicates if the third vertex is present (it marks a (potential) sliding point)
// wave function related
float phase; // phase of the representative wave inside the envelope, phase speed vs. group speed
float phOld; // old phase
float E; // wave energy flux for this packet (determines amplitude)
float envelope; // envelope size for this packet
float k,w0; // w0 = angular frequency, k = current wavenumber
float k_L,w0_L,k_H,w0_H; // w0 = angular frequency, k = current wavenumber, L/H are for lower/upper boundary
float d_L,d_H; // d = travel distance to reference wave (gets accumulated over time), L/H are for lower/upper boundary
float ampOld; // amplitude from last timestep, will be smoothly adjusted in each timestep to meet current desired amplitude
float dAmp; // amplitude change in each timestep (depends on desired waveheight so all waves (dis)appear with same speed)
// serial deletion step variable
bool toDelete; // used internally for parallel deletion criterion computation
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
struct GHOST_PACKET
{
Vector2f pos; // 2D position
Vector2f dir; // current movement direction
float speed; // speed of the packet
float envelope; // envelope size for this packet
float bending; // point used for circular arc bending of the wave function inside envelope
float k; // k = current (representative) wavenumber(s)
float phase; // phase of the representative wave inside the envelope
float dPhase; // phase speed relative to group speed inside the envelope
float ampOld; // amplitude from last timestep, will be smoothly adjusted in each timestep to meet current desired amplitude
float dAmp; // change in amplitude in each timestep (waves travel PACKET_BLEND_TRAVEL_FACTOR*envelopesize in space until they disappear)
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
class Packets
{
public:
// scene
int m_groundSizeX, m_groundSizeY; // pixel size of the ground texture
float *m_ground; // texture containing the water depth and land (0.95)
float *m_distMap; // distance map of the boundary map
Vector2f *m_gndDeriv;
Vector2f *m_bndDeriv;
// packet managing
WAVE_PACKET *m_packet; // wave packet data
GHOST_PACKET*m_ghostPacket; // ghost packet data
int m_packetBudget; // this can be changed any time (soft budget)
int m_packetNum; // current size of the buffer used for packets / ghosts
float m_softDampFactor;
int *m_usedPacket;
int m_usedPackets;
int *m_freePacket;
int m_freePackets;
int *m_usedGhost;
int m_usedGhosts;
int *m_freeGhost;
int m_freeGhosts;
// simulation
float m_time;
float m_oldTime;
float m_elapsedTime;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Packets(int packetBudget);
~Packets(void);
void Reset();
float GetBoundaryDist(Vector2f &p);
Vector2f GetBoundaryNormal(Vector2f &p);
float GetGroundVal(Vector2f &p);
Vector2f GetGroundNormal(Vector2f &p);
float GetWaterDepth(Vector2f &p);
void UpdateTime(float dTime);
void ExpandWavePacketMemory(int targetNum);
int GetFreePackedID();
void DeletePacket(int id);
int GetFreeGhostID();
void DeleteGhost(int id);
void CreatePacket(float pos1x, float pos1y, float pos2x, float pos2y, float dir1x, float dir1y, float dir2x, float dir2y, float k_L, float k_H, float E);
void CreateLinearWavefront(float xPos, float yPos, float dirx, float diry, float crestlength, float lambda_L, float lambda_H, float E);
void CreateSpreadingPacket(float xPos, float yPos, float dirx, float diry, float spreadFactor, float crestlength, float lambda_L, float lambda_H, float E);
void CreateCircularWavefront(float xPos, float yPos, float radius, float lambda_L, float lambda_H, float E);
void GetWaveParameters(float waterDepth, float w0, float kIn, float &k_out, float &speed_out);
float GetPhaseSpeed(float w_0, float kIn);
float GetWaveAmplitude(float area, float E, float k);
float GetIntersectionDistance(Vector2f pos1, Vector2f dir1, Vector2f pos2, Vector2f dir2);
bool AdvectPacketVertex(float elapsedTime, Vector2f &posIn, Vector2f &dirIn, float w0, float &kIn, float &speedIn, Vector2f &posOut, Vector2f &dirOut, float &speedOut);
void AdvectWavePackets(float dTime);
};

44
constants.h Normal file
View file

@ -0,0 +1,44 @@
// Taken from https://github.com/jeschke/water-wave-packets
// Originally GlobalDefs.h
// Global definitions needed for packet simulation and rendering
// scene parameters
#define SCENE_EXTENT 100.0f // extent of the entire scene (packets traveling outside are removed)
#define MIN_WATER_DEPTH 0.1f // minimum water depth (meters)
#define MAX_WATER_DEPTH 5.0f // maximum water depth (meters)
#define WATER_TERRAIN_FILE "TestIsland.bmp"// Contains water depth and land height in different channels
// rendering parameters
#define PACKET_GPU_BUFFER_SIZE 1000000 // maximum number of wave packets to be displayed in one draw call
/*
// Fast rendering setup
#define WAVETEX_WIDTH_FACTOR 0.5 // the wavemesh texture compared to screen resolution
#define WAVETEX_HEIGHT_FACTOR 1 // the wavemesh texture compared to screen resolution
#define WAVEMESH_WIDTH_FACTOR 0.1 // the fine wave mesh compared to screen resolution
#define WAVEMESH_HEIGHT_FACTOR 0.25 // the fine wave mesh compared to screen resolution
#define AA_OVERSAMPLE_FACTOR 2 // anti aliasing applied in BOTH X and Y directions {1,2,4,8}
*/
/*
// Balanced rendering setup
#define WAVETEX_WIDTH_FACTOR 1 // the wavemesh texture compared to screen resolution
#define WAVETEX_HEIGHT_FACTOR 2 // the wavemesh texture compared to screen resolution
#define WAVEMESH_WIDTH_FACTOR 1 // the fine wave mesh compared to screen resolution
#define WAVEMESH_HEIGHT_FACTOR 2 // the fine wave mesh compared to screen resolution
#define AA_OVERSAMPLE_FACTOR 2 // anti aliasing applied in BOTH X and Y directions {1,2,4,8}
*/
// High quality rendering setup
#define WAVETEX_WIDTH_FACTOR 2 // the wavemesh texture compared to screen resolution
#define WAVETEX_HEIGHT_FACTOR 4 // the wavemesh texture compared to screen resolution
#define WAVEMESH_WIDTH_FACTOR 2 // the fine wave mesh compared to screen resolution
#define WAVEMESH_HEIGHT_FACTOR 4 // the fine wave mesh compared to screen resolution
#define AA_OVERSAMPLE_FACTOR 4 // anti aliasing applied in BOTH X and Y directions {1,2,4,8}

3070
inf2705.h Normal file

File diff suppressed because it is too large Load diff

33
makefile Normal file
View file

@ -0,0 +1,33 @@
CONTEXT=sdl2
ifeq "$(shell uname)" "Darwin"
CONTEXT=glfw3
LDFLAGS += -lobjc -framework Foundation -framework OpenGL -framework Cocoa
endif
CXXFLAGS += -g -W -Wall -Wno-unused-parameter -Wno-deprecated-declarations
CXXFLAGS += $(shell pkg-config --cflags glew)
CXXFLAGS += $(shell pkg-config --cflags $(CONTEXT))
LDFLAGS += -g
LDFLAGS += $(shell pkg-config --libs glew)
LDFLAGS += $(shell pkg-config --libs $(CONTEXT))
TP="tp3"
SRC=ripple
exe : $(SRC).exe
run : exe
optirun ./$(SRC).exe
$(SRC).exe : $(SRC).cpp *.h
$(CXX) $(CXXFLAGS) -o$@ $(SRC).cpp $(LDFLAGS)
sol : ; make SRC=$(SRC)Solution exe
runs : ; make SRC=$(SRC)Solution run
clean :
rm -rf *.o *.exe *.exe.dSYM
remise zip :
make clean
rm -f remise_$(TP).zip
zip -r remise_$(TP).zip *.cpp *.h *.glsl makefile *.txt textures

View file

@ -0,0 +1,141 @@
#version 410
// Définition des paramètres des sources de lumière
layout (std140) uniform LightSourceParameters
{
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 position;
vec3 spotDirection;
float spotExponent;
float spotCutoff; // ([0.0,90.0] ou 180.0)
float constantAttenuation;
float linearAttenuation;
float quadraticAttenuation;
} LightSource[1];
// Définition des paramètres des matériaux
layout (std140) uniform MaterialParameters
{
vec4 emission;
vec4 ambient;
vec4 diffuse;
vec4 specular;
float shininess;
} FrontMaterial;
// Définition des paramètres globaux du modèle de lumière
layout (std140) uniform LightModelParameters
{
vec4 ambient; // couleur ambiante
bool localViewer; // observateur local ou à l'infini?
bool twoSide; // éclairage sur les deux côtés ou un seul?
} LightModel;
layout (std140) uniform varsUnif
{
// partie 1: illumination
int typeIllumination; // 0:Lambert, 1:Gouraud, 2:Phong
bool utiliseBlinn; // indique si on veut utiliser modèle spéculaire de Blinn ou Phong
bool utiliseDirect; // indique si on utilise un spot style Direct3D ou OpenGL
bool afficheNormales; // indique si on utilise les normales comme couleurs (utile pour le débogage)
// partie 3: texture
int texnumero; // numéro de la texture appliquée
bool utiliseCouleur; // doit-on utiliser la couleur de base de l'objet en plus de celle de la texture?
int afficheTexelNoir; // un texel noir doit-il être affiché 0:noir, 1:mi-coloré, 2:transparent?
};
uniform sampler2D laTexture;
/////////////////////////////////////////////////////////////////
in Attribs {
vec3 lumiDir, spotDir;
vec3 normale, obsVec;
vec2 texCoord;
vec4 couleur;
} AttribsIn;
out vec4 FragColor;
float calculerSpot( in vec3 spotDir, in vec3 L )
{
float spotFacteur;
float spotDot = dot( L, normalize( spotDir ) );
if ( utiliseDirect ) // modèle Direct3D
{
float cosAngleInterne = cos(radians(LightSource[0].spotCutoff));
float exposant = 1.01 + LightSource[0].spotExponent / 2.0;
float cosAngleExterne = pow( cos(radians(LightSource[0].spotCutoff)), exposant );
// calculer le facteur spot avec la fonction smoothstep()
spotFacteur = smoothstep( cosAngleExterne, cosAngleInterne, spotDot );
}
else // modèle OpenGL
{
spotFacteur = ( spotDot > cos(radians(LightSource[0].spotCutoff)) ) ? pow( spotDot, LightSource[0].spotExponent ) : 0.0;
}
return( spotFacteur );
}
vec4 calculerReflexion( in vec3 L, in vec3 N, in vec3 O )
{
vec4 coul = FrontMaterial.emission + FrontMaterial.ambient * LightModel.ambient;
// calcul de la composante ambiante
coul += FrontMaterial.ambient * LightSource[0].ambient;
// calcul de l'éclairage seulement si le produit scalaire est positif
float NdotL = max( 0.0, dot( N, L ) );
if ( NdotL > 0.0 )
{
// calcul de la composante diffuse
//coul += ( utiliseCouleur ? FrontMaterial.diffuse : vec4(1.0) ) * LightSource[0].diffuse * NdotL;
coul += FrontMaterial.diffuse * LightSource[0].diffuse * NdotL;
// calcul de la composante spéculaire (Blinn ou Phong)
float NdotHV = max( 0.0, ( utiliseBlinn ) ? dot( normalize( L + O ), N ) : dot( reflect( -L, N ), O ) );
coul += FrontMaterial.specular * LightSource[0].specular * ( ( NdotHV == 0.0 ) ? 0.0 : pow( NdotHV, FrontMaterial.shininess ) );
}
return( coul );
}
void main( void )
{
vec3 L = normalize( AttribsIn.lumiDir ); // vecteur vers la source lumineuse
vec3 N = normalize( AttribsIn.normale ); // vecteur normal
//vec3 N = normalize( gl_FrontFacing ? AttribsIn.normale : -AttribsIn.normale );
vec3 O = normalize( AttribsIn.obsVec ); // position de l'observateur
// calculer la réflexion:
// si illumination de 1:Gouraud, prendre la couleur interpolée qui a été reçue
// si illumination de 2:Phong, le faire!
// si illumination de 0:Lambert, faire comme Phong, même si les normales sont les mêmes pour tous les fragments
vec4 coul = ( typeIllumination == 1 ) ? AttribsIn.couleur : calculerReflexion( L, N, O );
// calculer l'influence du spot
float spotFacteur = calculerSpot( AttribsIn.spotDir, L );
coul *= spotFacteur;
//if ( spotFacteur <= 0.0 ) discard; // pour éliminer tout ce qui n'est pas dans le cône
// calcul de la composante ambiante
//coul += FrontMaterial.ambient * LightSource[0].ambient;
// appliquer la texture s'il y a lieu
if ( texnumero != 0 )
{
vec4 couleurTexture = texture( laTexture, AttribsIn.texCoord );
// comment afficher un texel noir?
if ( couleurTexture.r < 0.1 && couleurTexture.g < 0.1 && couleurTexture.b < 0.1 &&
spotFacteur > 0.0 )
if ( afficheTexelNoir == 1 )
couleurTexture = coul / 2.0;
else if ( afficheTexelNoir == 2 )
discard;
coul *= couleurTexture;
}
// assigner la couleur finale
FragColor = clamp( coul, 0.0, 1.0 );
if ( afficheNormales ) FragColor = vec4(N,1.0);
}

View file

@ -0,0 +1,73 @@
#version 410
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
uniform mat4 matrModel;
uniform mat4 matrVisu;
uniform mat4 matrProj;
uniform mat3 matrNormale;
layout (std140) uniform varsUnif
{
// partie 1: illumination
int typeIllumination; // 0:Lambert, 1:Gouraud, 2:Phong
bool utiliseBlinn; // indique si on veut utiliser modèle spéculaire de Blinn ou Phong
bool utiliseDirect; // indique si on utilise un spot style Direct3D ou OpenGL
bool afficheNormales; // indique si on utilise les normales comme couleurs (utile pour le débogage)
// partie 3: texture
int texnumero; // numéro de la texture appliquée
bool utiliseCouleur; // doit-on utiliser la couleur de base de l'objet en plus de celle de la texture?
int afficheTexelNoir; // un texel noir doit-il être affiché 0:noir, 1:mi-coloré, 2:transparent?
};
in Attribs {
vec3 lumiDir, spotDir;
vec3 normale, obsVec;
vec2 texCoord;
vec4 couleur;
} AttribsIn[];
out Attribs {
vec3 lumiDir, spotDir;
vec3 normale, obsVec;
vec2 texCoord;
vec4 couleur;
} AttribsOut;
void main()
{
// si illumination est Lambert, calculer une nouvelle normale
vec3 n = vec3(0.0);
if ( typeIllumination == 0 )
{
vec3 p0 = gl_in[0].gl_Position.xyz;
vec3 p1 = gl_in[1].gl_Position.xyz;
vec3 p2 = gl_in[2].gl_Position.xyz;
n = cross( p1-p0, p2-p0 ); // cette nouvelle normale est déjà dans le repère de la caméra
// il n'est pas nécessaire de la multiplier par matrNormale
}
// ou faire une moyenne, MAIS CE N'EST PAS CE QU'ON VEUT!
// if ( typeIllumination == 0 )
// {
// // calculer le centre
// for ( int i = 0 ; i < gl_in.length() ; ++i )
// {
// n += AttribsIn[i].normale;
// }
// n /= gl_in.length();
// }
// émettre les sommets
for ( int i = 0 ; i < gl_in.length() ; ++i )
{
gl_Position = matrProj * gl_in[i].gl_Position; // on termine la transformation débutée dans le nuanceur de sommets
AttribsOut.lumiDir = AttribsIn[i].lumiDir;
AttribsOut.spotDir = AttribsIn[i].spotDir;
AttribsOut.normale = ( typeIllumination == 0 ) ? n : AttribsIn[i].normale;
AttribsOut.obsVec = AttribsIn[i].obsVec;
AttribsOut.texCoord = AttribsIn[i].texCoord;
AttribsOut.couleur = AttribsIn[i].couleur;
EmitVertex();
}
}

View file

@ -0,0 +1,130 @@
#version 410
// Définition des paramètres des sources de lumière
layout (std140) uniform LightSourceParameters
{
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 position;
vec3 spotDirection;
float spotExponent;
float spotCutoff; // ([0.0,90.0] ou 180.0)
float constantAttenuation;
float linearAttenuation;
float quadraticAttenuation;
} LightSource[1];
// Définition des paramètres des matériaux
layout (std140) uniform MaterialParameters
{
vec4 emission;
vec4 ambient;
vec4 diffuse;
vec4 specular;
float shininess;
} FrontMaterial;
// Définition des paramètres globaux du modèle de lumière
layout (std140) uniform LightModelParameters
{
vec4 ambient; // couleur ambiante
bool localViewer; // observateur local ou à l'infini?
bool twoSide; // éclairage sur les deux côtés ou un seul?
} LightModel;
layout (std140) uniform varsUnif
{
// partie 1: illumination
int typeIllumination; // 0:Lambert, 1:Gouraud, 2:Phong
bool utiliseBlinn; // indique si on veut utiliser modèle spéculaire de Blinn ou Phong
bool utiliseDirect; // indique si on utilise un spot style Direct3D ou OpenGL
bool afficheNormales; // indique si on utilise les normales comme couleurs (utile pour le débogage)
// partie 3: texture
int texnumero; // numéro de la texture appliquée
bool utiliseCouleur; // doit-on utiliser la couleur de base de l'objet en plus de celle de la texture?
int afficheTexelNoir; // un texel noir doit-il être affiché 0:noir, 1:mi-coloré, 2:transparent?
};
uniform mat4 matrModel;
uniform mat4 matrVisu;
uniform mat4 matrProj;
uniform mat3 matrNormale;
/////////////////////////////////////////////////////////////////
layout(location=0) in vec4 Vertex;
layout(location=2) in vec3 Normal;
layout(location=3) in vec4 Color;
layout(location=8) in vec4 TexCoord;
out Attribs {
vec3 lumiDir, spotDir;
vec3 normale, obsVec;
vec2 texCoord;
vec4 couleur;
} AttribsOut;
vec4 calculerReflexion( in vec3 L, in vec3 N, in vec3 O )
{
vec4 coul = FrontMaterial.emission + FrontMaterial.ambient * LightModel.ambient;
// calcul de la composante ambiante
coul += FrontMaterial.ambient * LightSource[0].ambient;
// calcul de l'éclairage seulement si le produit scalaire est positif
float NdotL = max( 0.0, dot( N, L ) );
if ( NdotL > 0.0 )
{
// calcul de la composante diffuse
//coul += ( utiliseCouleur ? FrontMaterial.diffuse : vec4(1.0) ) * LightSource[0].diffuse * NdotL;
coul += FrontMaterial.diffuse * LightSource[0].diffuse * NdotL;
// calcul de la composante spéculaire (Blinn ou Phong)
float NdotHV = max( 0.0, ( utiliseBlinn ) ? dot( normalize( L + O ), N ) : dot( reflect( -L, N ), O ) );
coul += FrontMaterial.specular * LightSource[0].specular * ( ( NdotHV == 0.0 ) ? 0.0 : pow( NdotHV, FrontMaterial.shininess ) );
}
return( coul );
}
void main( void )
{
// transformation standard du sommet, ** sans la projection **
gl_Position = matrVisu * matrModel * Vertex;
// calculer la normale qui sera interpolée pour le nuanceur de fragment
AttribsOut.normale = matrNormale * Normal;
// calculer la position du sommet (dans le repère de la caméra)
vec3 pos = vec3( matrVisu * matrModel * Vertex );
// vecteur de la direction de la lumière (dans le repère de la caméra)
AttribsOut.lumiDir = vec3( ( matrVisu * LightSource[0].position ).xyz - pos );
// vecteur de la direction vers l'observateur (dans le repère de la caméra)
AttribsOut.obsVec = ( LightModel.localViewer ?
normalize(-pos) : // =(0-pos) un vecteur qui pointe vers le (0,0,0), c'est-à-dire vers la caméra
vec3( 0.0, 0.0, 1.0 ) ); // on considère que l'observateur (la caméra) est à l'infini dans la direction (0,0,1)
// vecteur de la direction du spot (en tenant compte seulement des rotations de la caméra)
AttribsOut.spotDir = inverse(mat3(matrVisu)) * -LightSource[0].spotDirection;
// On accepte aussi: (si on suppose que .spotDirection est déjà dans le repère de la caméra)
//AttribsOut.spotDir = -LightSource[0].spotDirection;
// On accepte aussi: (car matrVisu a seulement une translation et pas de rotation => "mat3(matrVisu) == I" )
//AttribsOut.spotDir = -LightSource[0].spotDirection;
// On accepte aussi: (car c'était le calcul qui était dans la solution précédente présentée dans le lab!)
//AttribsOut.spotDir = -( matrVisu * vec4(LightSource[0].spotDirection,1.0) ).xyz;
// si illumination est 1:Gouraud, calculer la réflexion ici, sinon ne rien faire de plus
if ( typeIllumination == 1 )
{
vec3 L = normalize( AttribsOut.lumiDir ); // calcul du vecteur de la surface vers la source lumineuse
vec3 N = normalize( AttribsOut.normale ); // vecteur normal
vec3 O = normalize( AttribsOut.obsVec ); // position de l'observateur
AttribsOut.couleur = calculerReflexion( L, N, O );
}
//else
// couleur = vec4(0.0); // inutile
// assigner les coordonnées de texture
AttribsOut.texCoord = TexCoord.st;
}

954
ripple.cpp Normal file
View file

@ -0,0 +1,954 @@
// Prénoms, noms et matricule des membres de l'équipe:
// - Prénom1 NOM1 (matricule1)
// - Prénom2 NOM2 (matricule2)
#include <stdlib.h>
#include <iostream>
#include "inf2705.h"
#define SOL 1
// variables pour l'utilisation des nuanceurs
GLuint prog; // votre programme de nuanceurs
GLint locVertex = -1;
GLint locNormal = -1;
GLint locTexCoord = -1;
GLint locmatrModel = -1;
GLint locmatrVisu = -1;
GLint locmatrProj = -1;
GLint locmatrNormale = -1;
GLint loclaTexture = -1;
GLuint indLightSource;
GLuint indFrontMaterial;
GLuint indLightModel;
GLuint indvarsUnif;
GLuint progBase; // le programme de nuanceurs de base
GLint locVertexBase = -1;
GLint locColorBase = -1;
GLint locmatrModelBase = -1;
GLint locmatrVisuBase = -1;
GLint locmatrProjBase = -1;
GLuint vao[2];
GLuint vbo[5];
GLuint ubo[4];
// matrices de du pipeline graphique
MatricePipeline matrModel;
MatricePipeline matrVisu;
MatricePipeline matrProj;
// les formes
FormeSphere *sphere = NULL, *sphereLumi = NULL;
FormeTheiere *theiere = NULL;
FormeTore *tore = NULL;
FormeCylindre *cylindre = NULL;
FormeCylindre *cone = NULL;
// variables pour définir le point de vue
double thetaCam = 0.0; // angle de rotation de la caméra (coord. sphériques)
double phiCam = 0.0; // angle de rotation de la caméra (coord. sphériques)
double distCam = 0.0; // distance (coord. sphériques)
// variables d'état
bool enPerspective = false; // indique si on est en mode Perspective (true) ou Ortho (false)
bool enmouvement = false; // le modèle est en mouvement/rotation automatique ou non
bool afficheAxes = true; // indique si on affiche les axes
GLenum modePolygone = GL_FILL; // comment afficher les polygones
////////////////////////////////////////
// déclaration des variables globales //
////////////////////////////////////////
// partie 1: illumination
int modele = 1; // le modèle à afficher
// partie 3: texture
GLuint textureDE = 0;
GLuint textureECHIQUIER = 0;
// définition des lumières
struct LightSourceParameters
{
glm::vec4 ambient;
glm::vec4 diffuse;
glm::vec4 specular;
glm::vec4 position;
glm::vec3 spotDirection;
float spotExposant;
float spotAngle; // ([0.0,90.0] ou 180.0)
float constantAttenuation;
float linearAttenuation;
float quadraticAttenuation;
} LightSource[1] = { { glm::vec4( 1.0, 1.0, 1.0, 1.0 ),
glm::vec4( 1.0, 1.0, 1.0, 1.0 ),
glm::vec4( 1.0, 1.0, 1.0, 1.0 ),
glm::vec4( 4, 1, 15, 1.0 ),
glm::vec3( -5.0, -2.0, -10.0 ),
1.0, // l'exposant du cône
15.0, // l'angle du cône du spot
1., 0., 0. } };
// définition du matériau
struct MaterialParameters
{
glm::vec4 emission;
glm::vec4 ambient;
glm::vec4 diffuse;
glm::vec4 specular;
float shininess;
} FrontMaterial = { glm::vec4( 0.0, 0.0, 0.0, 1.0 ),
glm::vec4( 0.1, 0.1, 0.1, 1.0 ),
glm::vec4( 1.0, 0.1, 1.0, 1.0 ),
glm::vec4( 1.0, 1.0, 1.0, 1.0 ),
100.0 };
struct LightModelParameters
{
glm::vec4 ambient; // couleur ambiante
int localViewer; // doit-on prendre en compte la position de l'observateur? (local ou à l'infini)
int twoSide; // éclairage sur les deux côtés ou un seul?
} LightModel = { glm::vec4(0,0,0,1), false, false };
struct
{
// partie 1: illumination
int typeIllumination; // 0:Lambert, 1:Gouraud, 2:Phong
int utiliseBlinn; // indique si on veut utiliser modèle spéculaire de Blinn ou Phong
int utiliseDirect; // indique si on utilise un spot style Direct3D ou OpenGL
int afficheNormales; // indique si on utilise les normales comme couleurs (utile pour le débogage)
// partie 3: texture
int texnumero; // numéro de la texture appliquée
int utiliseCouleur; // doit-on utiliser la couleur de base de l'objet en plus de celle de la texture?
int afficheTexelNoir; // un texel noir doit-il être affiché 0:noir, 1:mi-coloré, 2:transparent?
} varsUnif = { 2, false, false, false,
0, true, 0 };
// ( En glsl, les types 'bool' et 'int' sont de la même taille, ce qui n'est pas le cas en C++.
// Ci-dessus, on triche donc un peu en déclarant les 'bool' comme des 'int', mais ça facilite la
// copie directe vers le nuanceur où les variables seront bien de type 'bool'. )
void verifierAngles()
{
if ( thetaCam > 360.0 )
thetaCam -= 360.0;
else if ( thetaCam < 0.0 )
thetaCam += 360.0;
const GLdouble MINPHI = -90.0, MAXPHI = 90.0;
if ( phiCam > MAXPHI )
phiCam = MAXPHI;
else if ( phiCam < MINPHI )
phiCam = MINPHI;
}
void calculerPhysique( )
{
if ( enmouvement )
{
static int sensTheta = 1;
static int sensPhi = 1;
thetaCam += 0.3 * sensTheta;
phiCam += 0.5 * sensPhi;
//if ( thetaCam <= 0. || thetaCam >= 360.0 ) sensTheta = -sensTheta;
if ( phiCam < -90.0 || phiCam > 90.0 ) sensPhi = -sensPhi;
static int sensAngle = 1;
LightSource[0].spotAngle += sensAngle * 0.3;
if ( LightSource[0].spotAngle < 5.0 ) sensAngle = -sensAngle;
if ( LightSource[0].spotAngle > 60.0 ) sensAngle = -sensAngle;
#if 0
static int sensExposant = 1;
LightSource[0].spotExposant += sensExposant * 0.3;
if ( LightSource[0].spotExposant < 1.0 ) sensExposant = -sensExposant;
if ( LightSource[0].spotExposant > 10.0 ) sensExposant = -sensExposant;
#endif
// De temps à autre, alterner entre le modèle d'illumination: Lambert, Gouraud, Phong
static float type = 0;
type += 0.005;
varsUnif.typeIllumination = fmod(type,3);
}
verifierAngles();
}
void chargerTextures()
{
unsigned char *pixels;
GLsizei largeur, hauteur;
if ( ( pixels = ChargerImage( "textures/de.bmp", largeur, hauteur ) ) != NULL )
{
glGenTextures( 1, &textureDE );
glBindTexture( GL_TEXTURE_2D, textureDE );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, largeur, hauteur, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glBindTexture( GL_TEXTURE_2D, 0 );
delete[] pixels;
}
if ( ( pixels = ChargerImage( "textures/echiquier.bmp", largeur, hauteur ) ) != NULL )
{
glGenTextures( 1, &textureECHIQUIER );
glBindTexture( GL_TEXTURE_2D, textureECHIQUIER );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, largeur, hauteur, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glBindTexture( GL_TEXTURE_2D, 0 );
delete[] pixels;
}
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
}
void chargerNuanceurs()
{
// charger le nuanceur de base
{
// créer le programme
progBase = glCreateProgram();
// attacher le nuanceur de sommets
{
GLuint nuanceurObj = glCreateShader( GL_VERTEX_SHADER );
glShaderSource( nuanceurObj, 1, &ProgNuanceur::chainesSommetsMinimal, NULL );
glCompileShader( nuanceurObj );
glAttachShader( progBase, nuanceurObj );
ProgNuanceur::afficherLogCompile( nuanceurObj );
}
// attacher le nuanceur de fragments
{
GLuint nuanceurObj = glCreateShader( GL_FRAGMENT_SHADER );
glShaderSource( nuanceurObj, 1, &ProgNuanceur::chainesFragmentsMinimal, NULL );
glCompileShader( nuanceurObj );
glAttachShader( progBase, nuanceurObj );
ProgNuanceur::afficherLogCompile( nuanceurObj );
}
// faire l'édition des liens du programme
glLinkProgram( progBase );
ProgNuanceur::afficherLogLink( progBase );
// demander la "Location" des variables
if ( ( locVertexBase = glGetAttribLocation( progBase, "Vertex" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de Vertex" << std::endl;
if ( ( locColorBase = glGetAttribLocation( progBase, "Color" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de Color" << std::endl;
if ( ( locmatrModelBase = glGetUniformLocation( progBase, "matrModel" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de matrModel" << std::endl;
if ( ( locmatrVisuBase = glGetUniformLocation( progBase, "matrVisu" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de matrVisu" << std::endl;
if ( ( locmatrProjBase = glGetUniformLocation( progBase, "matrProj" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de matrProj" << std::endl;
}
// charger le nuanceur de ce TP
{
// créer le programme
prog = glCreateProgram();
// attacher le nuanceur de sommets
#if !defined(SOL)
const GLchar *chainesSommets = ProgNuanceur::lireNuanceur( "nuanceurSommets.glsl" );
#else
const GLchar *chainesSommets = ProgNuanceur::lireNuanceur( "nuanceurSommetsSolution.glsl" );
#endif
if ( chainesSommets != NULL )
{
GLuint nuanceurObj = glCreateShader( GL_VERTEX_SHADER );
glShaderSource( nuanceurObj, 1, &chainesSommets, NULL );
glCompileShader( nuanceurObj );
glAttachShader( prog, nuanceurObj );
ProgNuanceur::afficherLogCompile( nuanceurObj );
delete [] chainesSommets;
}
#if !defined(SOL)
const GLchar *chainesGeometrie = ProgNuanceur::lireNuanceur( "nuanceurGeometrie.glsl" );
#else
const GLchar *chainesGeometrie = ProgNuanceur::lireNuanceur( "nuanceurGeometrieSolution.glsl" );
#endif
if ( chainesGeometrie != NULL )
{
GLuint nuanceurObj = glCreateShader( GL_GEOMETRY_SHADER );
glShaderSource( nuanceurObj, 1, &chainesGeometrie, NULL );
glCompileShader( nuanceurObj );
glAttachShader( prog, nuanceurObj );
ProgNuanceur::afficherLogCompile( nuanceurObj );
delete [] chainesGeometrie;
}
// attacher le nuanceur de fragments
#if !defined(SOL)
const GLchar *chainesFragments = ProgNuanceur::lireNuanceur( "nuanceurFragments.glsl" );
#else
const GLchar *chainesFragments = ProgNuanceur::lireNuanceur( "nuanceurFragmentsSolution.glsl" );
#endif
if ( chainesFragments != NULL )
{
GLuint nuanceurObj = glCreateShader( GL_FRAGMENT_SHADER );
glShaderSource( nuanceurObj, 1, &chainesFragments, NULL );
glCompileShader( nuanceurObj );
glAttachShader( prog, nuanceurObj );
ProgNuanceur::afficherLogCompile( nuanceurObj );
delete [] chainesFragments;
}
// faire l'édition des liens du programme
glLinkProgram( prog );
ProgNuanceur::afficherLogLink( prog );
// demander la "Location" des variables
if ( ( locVertex = glGetAttribLocation( prog, "Vertex" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de Vertex" << std::endl;
if ( ( locNormal = glGetAttribLocation( prog, "Normal" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de Normal (partie 1)" << std::endl;
if ( ( locTexCoord = glGetAttribLocation( prog, "TexCoord" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de TexCoord (partie 3)" << std::endl;
if ( ( locmatrModel = glGetUniformLocation( prog, "matrModel" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de matrModel" << std::endl;
if ( ( locmatrVisu = glGetUniformLocation( prog, "matrVisu" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de matrVisu" << std::endl;
if ( ( locmatrProj = glGetUniformLocation( prog, "matrProj" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de matrProj" << std::endl;
if ( ( locmatrNormale = glGetUniformLocation( prog, "matrNormale" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de matrNormale (partie 1)" << std::endl;
if ( ( loclaTexture = glGetUniformLocation( prog, "laTexture" ) ) == -1 ) std::cerr << "!!! pas trouvé la \"Location\" de laTexture (partie 3)" << std::endl;
if ( ( indLightSource = glGetUniformBlockIndex( prog, "LightSourceParameters" ) ) == GL_INVALID_INDEX ) std::cerr << "!!! pas trouvé l'\"index\" de LightSource" << std::endl;
if ( ( indFrontMaterial = glGetUniformBlockIndex( prog, "MaterialParameters" ) ) == GL_INVALID_INDEX ) std::cerr << "!!! pas trouvé l'\"index\" de FrontMaterial" << std::endl;
if ( ( indLightModel = glGetUniformBlockIndex( prog, "LightModelParameters" ) ) == GL_INVALID_INDEX ) std::cerr << "!!! pas trouvé l'\"index\" de LightModel" << std::endl;
if ( ( indvarsUnif = glGetUniformBlockIndex( prog, "varsUnif" ) ) == GL_INVALID_INDEX ) std::cerr << "!!! pas trouvé l'\"index\" de varsUnif" << std::endl;
// charger les ubo
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[0] );
glBufferData( GL_UNIFORM_BUFFER, sizeof(LightSource), &LightSource, GL_DYNAMIC_COPY );
glBindBuffer( GL_UNIFORM_BUFFER, 0 );
const GLuint bindingIndex = 0;
glBindBufferBase( GL_UNIFORM_BUFFER, bindingIndex, ubo[0] );
glUniformBlockBinding( prog, indLightSource, bindingIndex );
}
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[1] );
glBufferData( GL_UNIFORM_BUFFER, sizeof(FrontMaterial), &FrontMaterial, GL_DYNAMIC_COPY );
glBindBuffer( GL_UNIFORM_BUFFER, 0 );
const GLuint bindingIndex = 1;
glBindBufferBase( GL_UNIFORM_BUFFER, bindingIndex, ubo[1] );
glUniformBlockBinding( prog, indFrontMaterial, bindingIndex );
}
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[2] );
glBufferData( GL_UNIFORM_BUFFER, sizeof(LightModel), &LightModel, GL_DYNAMIC_COPY );
glBindBuffer( GL_UNIFORM_BUFFER, 0 );
const GLuint bindingIndex = 2;
glBindBufferBase( GL_UNIFORM_BUFFER, bindingIndex, ubo[2] );
glUniformBlockBinding( prog, indLightModel, bindingIndex );
}
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[3] );
glBufferData( GL_UNIFORM_BUFFER, sizeof(varsUnif), &varsUnif, GL_DYNAMIC_COPY );
glBindBuffer( GL_UNIFORM_BUFFER, 0 );
const GLuint bindingIndex = 3;
glBindBufferBase( GL_UNIFORM_BUFFER, bindingIndex, ubo[3] );
glUniformBlockBinding( prog, indvarsUnif, bindingIndex );
}
}
}
// initialisation d'openGL
void initialiser()
{
// donner l'orientation du modèle
thetaCam = 0.0;
phiCam = 0.0;
distCam = 30.0;
// couleur de l'arrière-plan
glClearColor( 0.4, 0.2, 0.0, 1.0 );
// activer les etats openGL
glEnable( GL_DEPTH_TEST );
// charger les textures
chargerTextures();
// allouer les UBO pour les variables uniformes
glGenBuffers( 4, ubo );
// charger les nuanceurs
chargerNuanceurs();
glUseProgram( prog );
// (partie 1) créer le cube
/* +Y */
/* 3+-----------+2 */
/* |\ |\ */
/* | \ | \ */
/* | \ | \ */
/* | 7+-----------+6 */
/* | | | | */
/* | | | | */
/* 0+---|-------+1 | */
/* \ | \ | +X */
/* \ | \ | */
/* \| \| */
/* 4+-----------+5 */
/* +Z */
GLfloat sommets[3*4*6] =
{
-1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, // P3,P2,P0,P1
1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, // P5,P4,P1,P0
1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, // P6,P5,P2,P1
-1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, // P7,P6,P3,P2
-1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, // P4,P7,P0,P3
-1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0 // P4,P5,P7,P6
};
GLfloat normales[3*4*6] =
{
0.0, 0.0,-1.0, 0.0, 0.0,-1.0, 0.0, 0.0,-1.0, 0.0, 0.0,-1.0,
0.0,-1.0, 0.0, 0.0,-1.0, 0.0, 0.0,-1.0, 0.0, 0.0,-1.0, 0.0,
1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0,
-1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0,
};
GLfloat texcoordsDe[2*4*6] =
{
1.000000,0.000000, 0.666666,0.000000, 1.000000,0.333333, 0.666666,0.333333,
0.000000,0.666666, 0.333333,0.666666, 0.000000,0.333333, 0.333333,0.333333,
0.666666,1.000000, 0.666666,0.666666, 0.333333,1.000000, 0.333333,0.666666,
1.000000,0.333333, 0.666666,0.333333, 1.000000,0.666666, 0.666666,0.666666,
0.333333,0.000000, 0.333333,0.333333, 0.666666,0.000000, 0.666666,0.333333,
0.666666,0.333333, 0.333333,0.333333, 0.666666,0.666666, 0.333333,0.666666
};
GLfloat texcoordsEchiquier[2*4*6] =
{
-1.0, -1.0, -1.0, 2.0, 2.0, -1.0, 2.0, 2.0,
2.0, -1.0, -1.0, -1.0, 2.0, 2.0, -1.0, 2.0,
-1.0, -1.0, -1.0, 2.0, 2.0, -1.0, 2.0, 2.0,
-1.0, 2.0, 2.0, 2.0, -1.0, -1.0, 2.0, -1.0,
2.0, 2.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0,
-1.0, -1.0, -1.0, 2.0, 2.0, -1.0, 2.0, 2.0
};
// allouer les objets OpenGL
glGenVertexArrays( 2, vao );
glGenBuffers( 5, vbo );
// initialiser le VAO
glBindVertexArray( vao[0] );
// charger le VBO pour les sommets
glBindBuffer( GL_ARRAY_BUFFER, vbo[0] );
glBufferData( GL_ARRAY_BUFFER, sizeof(sommets), sommets, GL_STATIC_DRAW );
glVertexAttribPointer( locVertex, 3, GL_FLOAT, GL_FALSE, 0, 0 );
glEnableVertexAttribArray(locVertex);
// (partie 1) charger le VBO pour les normales
glBindBuffer( GL_ARRAY_BUFFER, vbo[1] );
glBufferData( GL_ARRAY_BUFFER, sizeof(normales), normales, GL_STATIC_DRAW );
glVertexAttribPointer( locNormal, 3, GL_FLOAT, GL_FALSE, 0, 0 );
glEnableVertexAttribArray(locNormal);
// (partie 3) charger le VBO pour les coordonnées de texture du dé
glBindBuffer( GL_ARRAY_BUFFER, vbo[2] );
glBufferData( GL_ARRAY_BUFFER, sizeof(texcoordsDe), texcoordsDe, GL_STATIC_DRAW );
glVertexAttribPointer( locTexCoord, 2, GL_FLOAT, GL_FALSE, 0, 0 );
glEnableVertexAttribArray(locTexCoord);
// (partie 3) charger le VBO pour les coordonnées de texture de l'échiquier
glBindBuffer( GL_ARRAY_BUFFER, vbo[3] );
glBufferData( GL_ARRAY_BUFFER, sizeof(texcoordsEchiquier), texcoordsEchiquier, GL_STATIC_DRAW );
glVertexAttribPointer( locTexCoord, 2, GL_FLOAT, GL_FALSE, 0, 0 );
glEnableVertexAttribArray(locTexCoord);
glBindVertexArray(0);
// initialiser le VAO pour une ligne (montrant la direction du spot)
glBindVertexArray( vao[1] );
GLfloat coords[] = { 0., 0., 0., 0., 0., 1. };
glBindBuffer( GL_ARRAY_BUFFER, vbo[4] );
glBufferData( GL_ARRAY_BUFFER, sizeof(coords), coords, GL_STATIC_DRAW );
glVertexAttribPointer( locVertexBase, 3, GL_FLOAT, GL_FALSE, 0, 0 );
glEnableVertexAttribArray(locVertexBase);
glBindVertexArray(0);
// créer quelques autres formes
sphere = new FormeSphere( 1.0, 32, 32 );
sphereLumi = new FormeSphere( 0.5, 10, 10 );
theiere = new FormeTheiere( );
tore = new FormeTore( 0.4, 0.8, 32, 32 );
cylindre = new FormeCylindre( 0.3, 0.3, 3.0, 32, 32 );
cone = new FormeCylindre( 0.0, 0.5, 3.0, 32, 32 );
}
void conclure()
{
glUseProgram( 0 );
glDeleteVertexArrays( 2, vao );
glDeleteBuffers( 4, vbo );
glDeleteBuffers( 4, ubo );
delete sphere;
delete sphereLumi;
delete theiere;
delete tore;
delete cylindre;
delete cone;
}
void afficherModele()
{
// partie 3: paramètres de texture
switch ( varsUnif.texnumero )
{
default:
//std::cout << "Sans texture" << std::endl;
glBindTexture( GL_TEXTURE_2D, 0 );
break;
case 1:
//std::cout << "Texture DE" << std::endl;
glBindTexture( GL_TEXTURE_2D, textureDE );
break;
case 2:
//std::cout << "Texture ECHIQUIER" << std::endl;
glBindTexture( GL_TEXTURE_2D, textureECHIQUIER );
break;
}
// Dessiner le modèle
matrModel.PushMatrix(); {
// appliquer les rotations
matrModel.Rotate( phiCam, -1.0, 0.0, 0.0 );
matrModel.Rotate( thetaCam, 0.0, -1.0, 0.0 );
// mise à l'échelle
matrModel.Scale( 5.0, 5.0, 5.0 );
glUniformMatrix4fv( locmatrModel, 1, GL_FALSE, matrModel );
// (partie 1: ne pas oublier de calculer et donner une matrice pour les transformations des normales)
glUniformMatrix3fv( locmatrNormale, 1, GL_TRUE, glm::value_ptr( glm::inverse( glm::mat3( matrVisu.getMatr() * matrModel.getMatr() ) ) ) );
switch ( modele )
{
default:
case 1:
// afficher le cube
glBindVertexArray( vao[0] );
glBindBuffer( GL_ARRAY_BUFFER, varsUnif.texnumero == 1 ? vbo[2] : vbo[3] );
glVertexAttribPointer( locTexCoord, 2, GL_FLOAT, GL_FALSE, 0, 0 );
glDrawArrays( GL_TRIANGLE_STRIP, 0, 4 );
glDrawArrays( GL_TRIANGLE_STRIP, 4, 4 );
glDrawArrays( GL_TRIANGLE_STRIP, 8, 4 );
glDrawArrays( GL_TRIANGLE_STRIP, 12, 4 );
glDrawArrays( GL_TRIANGLE_STRIP, 16, 4 );
glDrawArrays( GL_TRIANGLE_STRIP, 20, 4 );
glBindVertexArray( 0 );
break;
case 2:
tore->afficher();
break;
case 3:
sphere->afficher();
break;
case 4:
matrModel.Rotate( -90.0, 1.0, 0.0, 0.0 );
matrModel.Translate( 0.0, 0.0, -0.5 );
matrModel.Scale( 0.5, 0.5, 0.5 );
glUniformMatrix4fv( locmatrModel, 1, GL_FALSE, matrModel );
glUniformMatrix3fv( locmatrNormale, 1, GL_TRUE, glm::value_ptr( glm::inverse( glm::mat3( matrVisu.getMatr() * matrModel.getMatr() ) ) ) );
theiere->afficher( );
break;
case 5:
matrModel.PushMatrix(); {
matrModel.Translate( 0.0, 0.0, -1.5 );
glUniformMatrix4fv( locmatrModel, 1, GL_FALSE, matrModel );
glUniformMatrix3fv( locmatrNormale, 1, GL_TRUE, glm::value_ptr( glm::inverse( glm::mat3( matrVisu.getMatr() * matrModel.getMatr() ) ) ) );
cylindre->afficher();
} matrModel.PopMatrix();
break;
case 6:
matrModel.PushMatrix(); {
matrModel.Translate( 0.0, 0.0, -1.5 );
glUniformMatrix4fv( locmatrModel, 1, GL_FALSE, matrModel );
glUniformMatrix3fv( locmatrNormale, 1, GL_TRUE, glm::value_ptr( glm::inverse( glm::mat3( matrVisu.getMatr() * matrModel.getMatr() ) ) ) );
cone->afficher();
} matrModel.PopMatrix();
break;
}
} matrModel.PopMatrix(); glUniformMatrix4fv( locmatrModel, 1, GL_FALSE, matrModel );
}
void afficherLumiere()
{
// Dessiner la lumiere
// tracer une ligne vers la source lumineuse
const GLfloat fact = 5.;
GLfloat coords[] =
{
LightSource[0].position.x , LightSource[0].position.y , LightSource[0].position.z,
LightSource[0].position.x+LightSource[0].spotDirection.x/fact, LightSource[0].position.y+LightSource[0].spotDirection.y/fact, LightSource[0].position.z+LightSource[0].spotDirection.z/fact
};
glLineWidth( 3.0 );
glVertexAttrib3f( locColorBase, 1.0, 1.0, 0.5 ); // jaune
glBindVertexArray( vao[1] );
matrModel.PushMatrix(); {
glBindBuffer( GL_ARRAY_BUFFER, vbo[4] );
glBufferSubData( GL_ARRAY_BUFFER, 0, sizeof(coords), coords );
glDrawArrays( GL_LINES, 0, 2 );
} matrModel.PopMatrix(); glUniformMatrix4fv( locmatrModelBase, 1, GL_FALSE, matrModel );
glBindVertexArray( 0 );
glLineWidth( 1.0 );
// tracer la source lumineuse
matrModel.PushMatrix(); {
matrModel.Translate( LightSource[0].position.x, LightSource[0].position.y, LightSource[0].position.z );
glUniformMatrix4fv( locmatrModelBase, 1, GL_FALSE, matrModel );
sphereLumi->afficher();
} matrModel.PopMatrix(); glUniformMatrix4fv( locmatrModelBase, 1, GL_FALSE, matrModel );
}
// fonction d'affichage
void FenetreTP::afficherScene()
{
// effacer l'ecran et le tampon de profondeur
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glUseProgram( progBase );
// définir le pipeline graphique
if ( enPerspective )
{
matrProj.Perspective( 35.0, (GLdouble)largeur_ / (GLdouble)hauteur_,
0.1, 60.0 );
}
else
{
const GLfloat d = 8.0;
if ( largeur_ <= hauteur_ )
{
matrProj.Ortho( -d, d,
-d*(GLdouble)hauteur_ / (GLdouble)largeur_,
d*(GLdouble)hauteur_ / (GLdouble)largeur_,
0.1, 60.0 );
}
else
{
matrProj.Ortho( -d*(GLdouble)largeur_ / (GLdouble)hauteur_,
d*(GLdouble)largeur_ / (GLdouble)hauteur_,
-d, d,
0.1, 60.0 );
}
}
glUniformMatrix4fv( locmatrProjBase, 1, GL_FALSE, matrProj );
matrVisu.LookAt( 0.0, 0.0, distCam, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 );
glUniformMatrix4fv( locmatrVisuBase, 1, GL_FALSE, matrVisu );
matrModel.LoadIdentity();
glUniformMatrix4fv( locmatrModelBase, 1, GL_FALSE, matrModel );
// afficher les axes
if ( afficheAxes ) FenetreTP::afficherAxes( 8.0 );
// dessiner la scène
afficherLumiere();
glUseProgram( prog );
// mettre à jour les blocs de variables uniformes
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[0] );
GLvoid *p = glMapBuffer( GL_UNIFORM_BUFFER, GL_WRITE_ONLY );
memcpy( p, &LightSource, sizeof(LightSource) );
glUnmapBuffer( GL_UNIFORM_BUFFER );
}
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[1] );
GLvoid *p = glMapBuffer( GL_UNIFORM_BUFFER, GL_WRITE_ONLY );
memcpy( p, &FrontMaterial, sizeof(FrontMaterial) );
glUnmapBuffer( GL_UNIFORM_BUFFER );
}
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[2] );
GLvoid *p = glMapBuffer( GL_UNIFORM_BUFFER, GL_WRITE_ONLY );
memcpy( p, &LightModel, sizeof(LightModel) );
glUnmapBuffer( GL_UNIFORM_BUFFER );
}
{
glBindBuffer( GL_UNIFORM_BUFFER, ubo[3] );
GLvoid *p = glMapBuffer( GL_UNIFORM_BUFFER, GL_WRITE_ONLY );
memcpy( p, &varsUnif, sizeof(varsUnif) );
glUnmapBuffer( GL_UNIFORM_BUFFER );
}
// mettre à jour les matrices et autres uniformes
glUniformMatrix4fv( locmatrProj, 1, GL_FALSE, matrProj );
glUniformMatrix4fv( locmatrVisu, 1, GL_FALSE, matrVisu );
glUniformMatrix4fv( locmatrModel, 1, GL_FALSE, matrModel );
//glActiveTexture( GL_TEXTURE0 ); // activer la texture '0' (valeur de défaut)
glUniform1i( loclaTexture, 0 ); // '0' => utilisation de GL_TEXTURE0
afficherModele();
}
// fonction de redimensionnement de la fenêtre graphique
void FenetreTP::redimensionner( GLsizei w, GLsizei h )
{
glViewport( 0, 0, w, h );
}
static void echoEtats( )
{
static std::string illuminationStr[] = { "0:Lambert", "1:Gouraud", "2:Phong" };
static std::string reflexionStr[] = { "0:Phong", "1:Blinn" };
static std::string spotStr[] = { "0:OpenGL", "1:Direct3D" };
std::cout << " modèle d'illumination= " << illuminationStr[varsUnif.typeIllumination]
<< ", refléxion spéculaire= " << reflexionStr[varsUnif.utiliseBlinn]
<< ", spot= " << spotStr[varsUnif.utiliseDirect]
<< std::endl;
}
// fonction de gestion du clavier
void FenetreTP::clavier( TP_touche touche )
{
// traitement des touches q et echap
switch ( touche )
{
case TP_ECHAP:
case TP_q: // Quitter l'application
quit();
break;
case TP_x: // Activer/désactiver l'affichage des axes
afficheAxes = !afficheAxes;
std::cout << "// Affichage des axes ? " << ( afficheAxes ? "OUI" : "NON" ) << std::endl;
break;
case TP_v: // Recharger les fichiers des nuanceurs et recréer le programme
chargerNuanceurs();
std::cout << "// Recharger nuanceurs" << std::endl;
break;
case TP_p: // Permuter la projection: perspective ou orthogonale
enPerspective = !enPerspective;
break;
case TP_i: // Alterner entre le modèle d'illumination: Lambert, Gouraud, Phong
if ( ++varsUnif.typeIllumination > 2 ) varsUnif.typeIllumination = 0;
echoEtats( );
break;
case TP_r: // Alterner entre le modèle de réflexion spéculaire: Phong, Blinn
varsUnif.utiliseBlinn = !varsUnif.utiliseBlinn;
echoEtats( );
break;
case TP_s: // Alterner entre le modèle de spot: OpenGL, Direct3D
varsUnif.utiliseDirect = !varsUnif.utiliseDirect;
echoEtats( );
break;
//case TP_l: // Alterner entre une caméra locale à la scène ou distante (localViewer)
// LightModel.localViewer = !LightModel.localViewer;
// std::cout << " localViewer=" << LightModel.localViewer << std::endl;
// break;
case TP_a: // Incrémenter l'angle du cône du spot
case TP_EGAL:
case TP_PLUS:
LightSource[0].spotAngle += 2.0;
if ( LightSource[0].spotAngle > 90.0 ) LightSource[0].spotAngle = 90.0;
std::cout << " spotAngle=" << LightSource[0].spotAngle << std::endl;
break;
case TP_z: // Décrémenter l'angle du cône du spot
case TP_MOINS:
case TP_SOULIGNE:
LightSource[0].spotAngle -= 2.0;
if ( LightSource[0].spotAngle < 0.0 ) LightSource[0].spotAngle = 0.0;
std::cout << " spotAngle=" << LightSource[0].spotAngle << std::endl;
break;
case TP_d: // Incrémenter l'exposant du spot
case TP_BARREOBLIQUE:
LightSource[0].spotExposant += 0.3;
if ( LightSource[0].spotExposant > 89.0 ) LightSource[0].spotExposant = 89.0;
std::cout << " spotExposant=" << LightSource[0].spotExposant << std::endl;
break;
case TP_e: // Décrémenter l'exposant du spot
case TP_POINT:
LightSource[0].spotExposant -= 0.3;
if ( LightSource[0].spotExposant < 0.0 ) LightSource[0].spotExposant = 0.0;
std::cout << " spotExposant=" << LightSource[0].spotExposant << std::endl;
break;
case TP_j: // Incrémenter le coefficient de brillance
case TP_CROCHETDROIT:
FrontMaterial.shininess *= 1.1;
std::cout << " FrontMaterial.shininess=" << FrontMaterial.shininess << std::endl;
break;
case TP_u: // Décrémenter le coefficient de brillance
case TP_CROCHETGAUCHE:
FrontMaterial.shininess /= 1.1; if ( FrontMaterial.shininess < 0.0 ) FrontMaterial.shininess = 0.0;
std::cout << " FrontMaterial.shininess=" << FrontMaterial.shininess << std::endl;
break;
case TP_DROITE:
LightSource[0].position.x += 0.3;
break;
case TP_GAUCHE:
LightSource[0].position.x -= 0.3;
break;
case TP_BAS:
LightSource[0].position.y += 0.3;
break;
case TP_HAUT:
LightSource[0].position.y -= 0.3;
break;
case TP_FIN:
LightSource[0].spotDirection.x += 0.6;
break;
case TP_DEBUT:
LightSource[0].spotDirection.x -= 0.6;
break;
case TP_PAGEPREC:
LightSource[0].spotDirection.y += 0.6;
break;
case TP_PAGESUIV:
LightSource[0].spotDirection.y -= 0.6;
break;
case TP_m: // Choisir le modèle affiché: cube, tore, sphère, théière, cylindre, cône
if ( ++modele > 6 ) modele = 1;
std::cout << " modele=" << modele << std::endl;
break;
case TP_0:
thetaCam = 0.0; phiCam = 0.0; distCam = 30.0; // placer les choses afin d'avoir une belle vue
break;
case TP_t: // Choisir la texture utilisée: aucune, dé, échiquier
varsUnif.texnumero++;
if ( varsUnif.texnumero > 2 ) varsUnif.texnumero = 0;
std::cout << " varsUnif.texnumero=" << varsUnif.texnumero << std::endl;
break;
// case TP_c: // Changer l'affichage de l'objet texturé avec couleurs ou sans couleur
// varsUnif.utiliseCouleur = !varsUnif.utiliseCouleur;
// std::cout << " utiliseCouleur=" << varsUnif.utiliseCouleur << std::endl;
// break;
case TP_o: // Changer l'affichage des texels noirs (noir, mi-coloré, transparent)
varsUnif.afficheTexelNoir++;
if ( varsUnif.afficheTexelNoir > 2 ) varsUnif.afficheTexelNoir = 0;
std::cout << " afficheTexelNoir=" << varsUnif.afficheTexelNoir << std::endl;
break;
case TP_g: // Permuter l'affichage en fil de fer ou plein
modePolygone = ( modePolygone == GL_FILL ) ? GL_LINE : GL_FILL;
glPolygonMode( GL_FRONT_AND_BACK, modePolygone );
break;
case TP_n: // Utiliser ou non les normales calculées comme couleur (pour le débogage)
varsUnif.afficheNormales = !varsUnif.afficheNormales;
break;
case TP_ESPACE: // Permuter la rotation automatique du modèle
enmouvement = !enmouvement;
break;
default:
std::cout << " touche inconnue : " << (char) touche << std::endl;
imprimerTouches();
break;
}
}
// fonction callback pour un clic de souris
int dernierX = 0; // la dernière valeur en X de position de la souris
int dernierY = 0; // la derniere valeur en Y de position de la souris
static enum { deplaceCam, deplaceSpotDirection, deplaceSpotPosition } deplace = deplaceCam;
static bool pressed = false;
void FenetreTP::sourisClic( int button, int state, int x, int y )
{
pressed = ( state == TP_PRESSE );
if ( pressed )
{
// on vient de presser la souris
dernierX = x;
dernierY = y;
switch ( button )
{
case TP_BOUTON_GAUCHE: // Tourner l'objet
deplace = deplaceCam;
break;
case TP_BOUTON_MILIEU: // Modifier l'orientation du spot
deplace = deplaceSpotDirection;
break;
case TP_BOUTON_DROIT: // Déplacer la lumière
deplace = deplaceSpotPosition;
break;
}
}
else
{
// on vient de relâcher la souris
}
}
void FenetreTP::sourisWheel( int x, int y ) // Changer la taille du spot
{
const int sens = +1;
LightSource[0].spotAngle += sens*y;
if ( LightSource[0].spotAngle > 90.0 ) LightSource[0].spotAngle = 90.0;
if ( LightSource[0].spotAngle < 0.0 ) LightSource[0].spotAngle = 0.0;
std::cout << " spotAngle=" << LightSource[0].spotAngle << std::endl;
}
// fonction de mouvement de la souris
void FenetreTP::sourisMouvement( int x, int y )
{
if ( pressed )
{
int dx = x - dernierX;
int dy = y - dernierY;
switch ( deplace )
{
case deplaceCam:
thetaCam -= dx / 3.0;
phiCam -= dy / 3.0;
break;
case deplaceSpotDirection:
LightSource[0].spotDirection.x += 0.06 * dx;
LightSource[0].spotDirection.y -= 0.06 * dy;
// std::cout << " LightSource[0].spotDirection=" << glm::to_string(LightSource[0].spotDirection) << std::endl;
break;
case deplaceSpotPosition:
LightSource[0].position.x += 0.03 * dx;
LightSource[0].position.y -= 0.03 * dy;
// std::cout << " LightSource[0].position=" << glm::to_string(LightSource[0].position) << std::endl;
//glm::vec3 ecranPos( x, hauteur_-y, ecranLumi[2] );
//LightSource[0].position = glm::vec4(glm::unProject( ecranPos, VM, P, cloture ), 1.0);
break;
}
dernierX = x;
dernierY = y;
verifierAngles();
}
}
int main( int argc, char *argv[] )
{
// créer une fenêtre
FenetreTP fenetre( "INF2705 TP" );
// allouer des ressources et définir le contexte OpenGL
initialiser();
bool boucler = true;
while ( boucler )
{
// mettre à jour la physique
calculerPhysique( );
// affichage
fenetre.afficherScene();
fenetre.swap();
// récupérer les événements et appeler la fonction de rappel
boucler = fenetre.gererEvenement();
}
// détruire les ressources OpenGL allouées
conclure();
return 0;
}

BIN
textures/TestIsland.bmp Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3 MiB