miniprojet/tests/src/math.hpp

208 lines
4.7 KiB
C++
Raw Normal View History

#pragma once
#include <vector>
#include <complex>
#include <opencv2/opencv.hpp>
#include <iterator>
namespace math {
using complex = std::complex<double>;
using signal = std::vector<double>;
using csignal = std::vector<complex>;
using contour = std::vector<cv::Point>;
constexpr double pi() {return std::atan(1)*4;}
int filter(const cv::Mat& img, cv::Mat output, int seuil) {
bool detect = false;
uchar R, G, B;
int rows = img.rows;
int cols = img.cols;
int dim = img.channels();
int indexNB;
for (int index=0,indexNB=0;index<dim*rows*cols;index+=dim,indexNB++) {
detect=0;
B = img.data[index ];
G = img.data[index + 1];
R = img.data[index + 2];
if ((R>G) && (R>B))
if (((R-B)>=seuil) || ((R-G)>=seuil))
detect=1;
if (detect==1)
output.data[indexNB]=255;
else
output.data[indexNB]=0;
}
}
csignal cont2sig(const contour& cont) {
csignal sig;
for (auto p: cont) {
sig.push_back(complex(p.x, p.y));
}
return sig;
};
complex mean(const csignal& sig) {
complex res = 0;
for (auto x: sig) {
res += x;
}
return complex(res.real()/sig.size(), res.imag()/sig.size());
};
csignal diff(const csignal& input, complex mean) {
2019-11-26 13:50:55 +01:00
csignal res;
for (auto x: input) {
res.push_back(x-mean);
2019-11-26 13:50:55 +01:00
}
return res;
}
csignal fft_rec(const csignal& input) {
int size = input.size();
if (size <= 1) {
2019-11-26 13:50:55 +01:00
return input;
} else {
csignal odd;
csignal even;
auto odd_back_it = std::back_inserter(odd);
auto even_back_it = std::back_inserter(even);
bool insert_in_even = false;
for (auto it = input.begin(); it != input.end(); ++it) {
if (insert_in_even) {
*(even_back_it++) = *it;
insert_in_even = false;
} else {
*(odd_back_it++) = *it;
insert_in_even = true;
}
}
csignal odd_fft = fft_rec(odd);
csignal even_fft = fft_rec(even);
csignal res(size, complex());
for (int k=0; k<size/2; ++k) {
complex t = std::exp(complex(0, -2*pi()*k/size)) * odd_fft[k];
res[k] = even_fft[k] + t;
res[size/2+k] = even_fft[k] - t;
}
return res;
}
}
csignal fft(const csignal& input, int N=0) {
int opt_size;
if (N < input.size()) {
opt_size = 1 << (int)std::ceil(std::log(input.size())/std::log(2));
} else if (N==0){
opt_size = input.size();
} else {
opt_size = 1 << (int)std::ceil(std::log(N)/std::log(2));
}
2019-11-26 14:22:52 +01:00
csignal sig(input);
for (int i=0; i<opt_size-input.size(); ++i) {
sig.push_back(complex(0, 0));
}
return fft_rec(sig);
};
void operator*=(csignal& sig, complex& m) {
for(auto x: sig) {
x *= m;
}
}
void operator*=(csignal& sig, complex&& m) {
for(auto x: sig) {
x *= m;
}
}
void operator/=(csignal& sig, complex& m) {
for(auto x: sig) {
x /= m;
}
}
void operator/=(csignal& sig, complex&& m) {
for(auto x: sig) {
x /= m;
}
}
csignal extract(const csignal& tfd, int cmax) {
csignal res;
for (int k=0; k<cmax; ++k) {
res.push_back(tfd[tfd.size() - cmax + k]);
}
for (int k=cmax; k<2*cmax; ++k) {
res.push_back(tfd[k]);
}
return res;
}
contour sig2cont(const csignal& sig) {
contour res;
for (auto x: sig) {
res.push_back(cv::Point(x.real(), x.imag()));
}
return res;
}
csignal desc2sig(const csignal& desc, complex mean, int N, int kmin) {
csignal cont;
auto desc_it = desc.begin();
for (int m=0; m<N; ++m) {
complex sum;
for (int k=0; k<desc.size(); ++k) {
sum += desc[k]*std::exp(complex(0, 2*pi()*(k+kmin)*m/N));
}
cont.push_back(mean + sum);
}
return cont;
};
contour simplify_contour(const contour& cont, int cmax) {
csignal z = cont2sig(cont);
complex zm = mean(z);
2019-11-26 13:50:55 +01:00
csignal tfd = fft(diff(z, zm));
tfd /= tfd.size();
csignal desc = extract(tfd, cmax);
if (std::abs(desc[desc.size()-1]) > std::abs(desc[0])) {
std::reverse(desc.begin(), desc.end());
}
double phy = std::arg(desc[desc.size()-1]*desc[0])/2;
desc *= std::exp(complex(0, -phy));
double theta = std::arg(desc[0]);
for (int k=0; k<desc.size(); ++k) {
desc[k] *= std::exp(complex(0, -theta*k));
}
desc /= desc[0];
csignal sig = desc2sig(desc, zm, z.size(), cmax);
return sig2cont(sig);
};
int max_cont(const std::vector<contour>& contours) {
int max = 0;
int id = 0;
for (int i=0; i<contours.size(); ++i) {
if (contours[i].size() > max) {
max = contours[i].size();
id = i;
}
}
return id;
};
}