#pragma once #include <vector> #include <complex> #include <opencv2/opencv.hpp> #include <iterator> namespace math { using complex = std::complex<double>; using signal = std::vector<double>; using csignal = std::vector<complex>; using contour = std::vector<cv::Point>; constexpr double pi() {return std::atan(1)*4;} int filter(const cv::Mat& img, cv::Mat output, int seuil) { bool detect = false; uchar R, G, B; int rows = img.rows; int cols = img.cols; int dim = img.channels(); int indexNB; for (int index=0,indexNB=0;index<dim*rows*cols;index+=dim,indexNB++) { detect=0; B = img.data[index ]; G = img.data[index + 1]; R = img.data[index + 2]; if ((R>G) && (R>B)) if (((R-B)>=seuil) || ((R-G)>=seuil)) detect=1; if (detect==1) output.data[indexNB]=255; else output.data[indexNB]=0; } } csignal cont2sig(const contour& cont) { csignal sig; for (auto p: cont) { sig.push_back(complex(p.x, p.y)); } return sig; }; complex mean(const csignal& sig) { complex res = 0; for (auto x: sig) { res += x; } return complex(res.real()/sig.size(), res.imag()/sig.size()); }; csignal diff(const csignal& input, complex mean) { csignal res; for (auto x: input) { res.push_back(x-mean); } return res; } csignal fft_rec(const csignal& input) { int size = input.size(); if (size <= 1) { return input; } else { csignal odd; csignal even; auto odd_back_it = std::back_inserter(odd); auto even_back_it = std::back_inserter(even); bool insert_in_even = false; for (auto it = input.begin(); it != input.end(); ++it) { if (insert_in_even) { *(even_back_it++) = *it; insert_in_even = false; } else { *(odd_back_it++) = *it; insert_in_even = true; } } csignal odd_fft = fft_rec(odd); csignal even_fft = fft_rec(even); csignal res(size, complex()); for (int k=0; k<size/2; ++k) { complex t = std::exp(complex(0, -2*pi()*k/size)) * odd_fft[k]; res[k] = even_fft[k] + t; res[size/2+k] = even_fft[k] - t; } return res; } } csignal fft(const csignal& input, int N=0) { int opt_size; if (N < input.size()) { opt_size = 1 << (int)std::ceil(std::log(input.size())/std::log(2)); } else if (N==0){ opt_size = input.size(); } else { opt_size = 1 << (int)std::ceil(std::log(N)/std::log(2)); } csignal sig(input); for (int i=0; i<opt_size-input.size(); ++i) { sig.push_back(complex(0, 0)); } return fft_rec(sig); }; void operator*=(csignal& sig, complex& m) { for(auto x: sig) { x *= m; } } void operator*=(csignal& sig, complex&& m) { for(auto x: sig) { x *= m; } } void operator/=(csignal& sig, complex& m) { for(auto x: sig) { x /= m; } } void operator/=(csignal& sig, complex&& m) { for(auto x: sig) { x /= m; } } csignal extract(const csignal& tfd, int cmax) { csignal res; for (int k=0; k<cmax; ++k) { res.push_back(tfd[tfd.size() - cmax + k]); } for (int k=cmax; k<2*cmax; ++k) { res.push_back(tfd[k]); } return res; } contour sig2cont(const csignal& sig) { contour res; for (auto x: sig) { res.push_back(cv::Point(x.real(), x.imag())); } return res; } csignal desc2sig(const csignal& desc, complex mean, int N, int kmin) { csignal cont; auto desc_it = desc.begin(); for (int m=0; m<N; ++m) { complex sum; for (int k=0; k<desc.size(); ++k) { sum += desc[k]*std::exp(complex(0, 2*pi()*(k+kmin)*m/N)); } cont.push_back(mean + sum); } return cont; }; contour simplify_contour(const contour& cont, int cmax) { csignal z = cont2sig(cont); complex zm = mean(z); csignal tfd = fft(diff(z, zm)); tfd /= tfd.size(); csignal desc = extract(tfd, cmax); if (std::abs(desc[desc.size()-1]) > std::abs(desc[0])) { std::reverse(desc.begin(), desc.end()); } double phy = std::arg(desc[desc.size()-1]*desc[0])/2; desc *= std::exp(complex(0, -phy)); double theta = std::arg(desc[0]); for (int k=0; k<desc.size(); ++k) { desc[k] *= std::exp(complex(0, -theta*k)); } desc /= desc[0]; csignal sig = desc2sig(desc, zm, z.size(), cmax); return sig2cont(sig); }; int max_cont(const std::vector<contour>& contours) { int max = 0; int id = 0; for (int i=0; i<contours.size(); ++i) { if (contours[i].size() > max) { max = contours[i].size(); id = i; } } return id; }; }