Compare commits
7 commits
master
...
optimise-f
Author | SHA1 | Date | |
---|---|---|---|
|
1cca8e6411 | ||
|
40f52fbf03 | ||
|
90f55e89cd | ||
|
a488dbeec2 | ||
|
a259a853e4 | ||
|
e4ac1b70af | ||
|
ce831fb167 |
3 changed files with 151 additions and 125 deletions
|
@ -23,6 +23,7 @@ target_link_libraries(papillon ${catkin_LIBRARIES})
|
|||
set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${OpenCV_INCLUDE_DIRS})
|
||||
set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${catkin_INCLUDE_DIRS})
|
||||
set_property (TARGET papillon APPEND PROPERTY LINK_LIBRARIES ${OpenCV_LIBRARIES})
|
||||
set( CMAKE_EXPORT_COMPILE_COMMANDS 1 )
|
||||
|
||||
|
||||
install(TARGETS papillon DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})
|
||||
|
|
1
commands
Normal file
1
commands
Normal file
|
@ -0,0 +1 @@
|
|||
catkin_make -DCMAKE_BUILD_TYPE=Debug
|
166
src/papillon.cpp
166
src/papillon.cpp
|
@ -3,6 +3,7 @@
|
|||
#include <cv_bridge/cv_bridge.h>
|
||||
#include <sensor_msgs/image_encodings.h>
|
||||
#include <geometry_msgs/Twist.h>
|
||||
#include <typeinfo>
|
||||
|
||||
#include <opencv/cv.h>
|
||||
|
||||
|
@ -13,13 +14,26 @@ using namespace std;
|
|||
|
||||
class Traite_image {
|
||||
public:
|
||||
const static int SENSITIVITY_VALUE = 30;
|
||||
const static int BLUR_SIZE = 10;
|
||||
const static int THRESHOLD_DETECT_SENSITIVITY = 10;
|
||||
const static int BLUR_SIZE = 5;
|
||||
const static int THRESHOLD_MOV = 5;
|
||||
constexpr static float MOVEMENT_THRES = 0.05;
|
||||
|
||||
constexpr static float FLOW_MIN_QUAL = 0.01;
|
||||
const static int FLOW_MIN_DIST = 20;
|
||||
|
||||
|
||||
Mat prev;
|
||||
Mat last_T;
|
||||
|
||||
// Stabilisation transformation matrices
|
||||
Mat T, last_T;
|
||||
|
||||
bool first = true;
|
||||
|
||||
// Features vectors
|
||||
vector <Point2f> prev_ftr, cur_ftr;
|
||||
|
||||
// Downsize factor
|
||||
int resize_f = 1;
|
||||
|
||||
int theObject[2] = {0,0};
|
||||
|
@ -66,11 +80,14 @@ class Traite_image {
|
|||
}
|
||||
|
||||
Mat next_stab;
|
||||
stabiliseImg(prev, next, next_stab);
|
||||
Rect myROI(next_stab.size().width/8, next_stab.size().height/8, next_stab.size().width*3/4, next_stab.size().height*3/4);
|
||||
Mat next_stab_cropped = next_stab(myROI);
|
||||
Mat prev_cropped = prev(myROI);
|
||||
searchForMovement(prev_cropped, next_stab_cropped, output);
|
||||
trackFeatures(prev, next);
|
||||
stabiliseImg(next, next_stab);
|
||||
trackingOptFlow(prev, next_stab, next_stab);
|
||||
Mat next_stab2;
|
||||
trackFeatures(prev, next);
|
||||
stabiliseImg(next, next_stab2);
|
||||
trackingOptFlow(prev, next_stab2, output);
|
||||
//searchForMovementOptFlow(prev_cropped, next_stab_cropped, output);
|
||||
|
||||
|
||||
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
|
||||
|
@ -83,42 +100,38 @@ class Traite_image {
|
|||
prev = next.clone();
|
||||
}
|
||||
|
||||
//int to string helper function
|
||||
string intToString(int number){
|
||||
|
||||
//this function has a number input and string output
|
||||
std::stringstream ss;
|
||||
ss << number;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void stabiliseImg(Mat prev, Mat cur, Mat &output){
|
||||
void trackFeatures(Mat prev, Mat cur) {
|
||||
Mat cur_grey, prev_grey;
|
||||
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
||||
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
||||
|
||||
// vector from prev to cur
|
||||
vector <Point2f> prev_corner, cur_corner;
|
||||
vector <Point2f> prev_corner2, cur_corner2;
|
||||
vector <uchar> status;
|
||||
vector <float> err;
|
||||
|
||||
goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30);
|
||||
goodFeaturesToTrack(prev_grey, prev_corner, 200, FLOW_MIN_QUAL, FLOW_MIN_DIST);
|
||||
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
|
||||
|
||||
// weed out bad matches
|
||||
prev_ftr.resize(0);
|
||||
cur_ftr.resize(0);
|
||||
for(size_t i=0; i < status.size(); i++) {
|
||||
if(status[i]) {
|
||||
prev_corner2.push_back(prev_corner[i]);
|
||||
cur_corner2.push_back(cur_corner[i]);
|
||||
prev_ftr.push_back(prev_corner[i]);
|
||||
cur_ftr.push_back(cur_corner[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Mat T = estimateRigidTransform(prev_corner2, cur_corner2, true); // false = rigid transform, no scaling/shearing
|
||||
|
||||
if(T.data == NULL) {
|
||||
void stabiliseImg(Mat cur, Mat &output){
|
||||
T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
||||
|
||||
if(T.data == NULL)
|
||||
last_T.copyTo(T);
|
||||
}
|
||||
else
|
||||
T.copyTo(last_T);
|
||||
|
||||
Mat cur2;
|
||||
|
@ -128,58 +141,59 @@ class Traite_image {
|
|||
cur2.copyTo(output);
|
||||
}
|
||||
|
||||
void searchForMovement(Mat prev, Mat cur, Mat &output){
|
||||
Mat cur_grey, prev_grey;
|
||||
|
||||
void warpPoints(vector<Point2f> p, vector<Point2f> &p_warp, Mat T, bool invert=false) {
|
||||
Mat H;
|
||||
if(invert)
|
||||
invertAffineTransform(T, H);
|
||||
|
||||
p_warp.clear();
|
||||
for(size_t i=0; i < p.size(); ++i) {
|
||||
Mat src(3/*rows*/,1 /* cols */,CV_64F);
|
||||
|
||||
src.at<double>(0,0)=p[i].x;
|
||||
src.at<double>(1,0)=p[i].y;
|
||||
src.at<double>(2,0)=1.0;
|
||||
|
||||
Mat dst = H*src; //USE MATRIX ALGEBRA
|
||||
p_warp.push_back(Point2f(dst.at<double>(0,0),dst.at<double>(1,0)));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void trackingOptFlow(Mat prev, Mat cur, Mat &output) {
|
||||
cur.copyTo(output);
|
||||
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
||||
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
||||
vector <Point2f> cur_ftr_stab;
|
||||
|
||||
// Subtract the 2 last frames and threshold them
|
||||
Mat thres;
|
||||
absdiff(prev_grey,cur_grey,thres);
|
||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
||||
// Blur to eliminate noise
|
||||
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE));
|
||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
||||
//T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
||||
//if(T.data == NULL)
|
||||
// last_T.copyTo(T);
|
||||
//else
|
||||
// T.copyTo(last_T);
|
||||
|
||||
//notice how we use the '&' operator for objectDetected and output. This is because we wish
|
||||
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
||||
//eg. we draw to the output to be displayed in the main() function.
|
||||
bool objectDetected = false;
|
||||
Mat temp;
|
||||
thres.copyTo(temp);
|
||||
//these two vectors needed for output of findContours
|
||||
vector< vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
//find contours of filtered image using openCV findContours function
|
||||
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
||||
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
||||
warpPoints(cur_ftr, cur_ftr_stab, T, true);
|
||||
|
||||
//if contours vector is not empty, we have found some objects
|
||||
if(contours.size()>0)objectDetected=true;
|
||||
else objectDetected = false;
|
||||
|
||||
if(objectDetected){
|
||||
//the largest contour is found at the end of the contours vector
|
||||
//we will simply assume that the biggest contour is the object we are looking for.
|
||||
vector< vector<Point> > largestContourVec;
|
||||
largestContourVec.push_back(contours.at(contours.size()-1));
|
||||
//make a bounding rectangle around the largest contour then find its centroid
|
||||
//this will be the object's final estimated position.
|
||||
objectBoundingRectangle = boundingRect(largestContourVec.at(0));
|
||||
vector <Point2f> objects;
|
||||
vector <float> flow_norm;
|
||||
for(size_t i=0; i < prev_ftr.size(); ++i) {
|
||||
flow_norm.push_back(norm(prev_ftr[i] - cur_ftr_stab[i]) / prev.size().height);
|
||||
line(output, prev_ftr[i], cur_ftr[i], Scalar(200,0,0),1);
|
||||
line(output, prev_ftr[i], cur_ftr_stab[i], Scalar(0,200,0),1);
|
||||
}
|
||||
//make some temp x and y variables so we dont have to type out so much
|
||||
int x = objectBoundingRectangle.x;
|
||||
int y = objectBoundingRectangle.y;
|
||||
int width = objectBoundingRectangle.width;
|
||||
int height = objectBoundingRectangle.height;
|
||||
|
||||
//draw a rectangle around the object
|
||||
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2);
|
||||
|
||||
//write the position of the object to the screen
|
||||
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
||||
for(size_t i=0; i < flow_norm.size(); ++i) {
|
||||
if(flow_norm[i] > MOVEMENT_THRES) {
|
||||
objects.push_back(cur_ftr_stab[i]);
|
||||
prev_ftr.erase(prev_ftr.begin() + i);
|
||||
cur_ftr.erase(cur_ftr.begin() + i);
|
||||
}
|
||||
}
|
||||
|
||||
for(size_t i=0; i < objects.size(); ++i) {
|
||||
circle(output, objects[i], 5, Scalar(0, 200, 0), 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
inline bool isFlowCorrect(Point2f u)
|
||||
{
|
||||
|
@ -194,17 +208,27 @@ class Traite_image {
|
|||
|
||||
geometry_msgs::Twist twist = geometry_msgs::Twist();
|
||||
|
||||
if(centre_rect.x < centre_image.x)
|
||||
if(centre_rect.x < centre_image.x-THRESHOLD_MOV)
|
||||
{
|
||||
twist.angular.z = 0.2;
|
||||
}
|
||||
else if(centre_rect.x > centre_image.x)
|
||||
else if(centre_rect.x > centre_image.x+THRESHOLD_MOV)
|
||||
{
|
||||
twist.angular.z = -0.2;
|
||||
}
|
||||
|
||||
pub_cmd.publish(twist);
|
||||
}
|
||||
|
||||
|
||||
//int to string helper function
|
||||
string intToString(int number){
|
||||
|
||||
//this function has a number input and string output
|
||||
std::stringstream ss;
|
||||
ss << number;
|
||||
return ss.str();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue