Compare commits
4 commits
master
...
drone_cont
Author | SHA1 | Date | |
---|---|---|---|
|
c608313530 | ||
|
d8a97dbbdd | ||
|
e4ac1b70af | ||
|
ce831fb167 |
1 changed files with 80 additions and 14 deletions
|
@ -3,6 +3,7 @@
|
|||
#include <cv_bridge/cv_bridge.h>
|
||||
#include <sensor_msgs/image_encodings.h>
|
||||
#include <geometry_msgs/Twist.h>
|
||||
#include <typeinfo>
|
||||
|
||||
#include <opencv/cv.h>
|
||||
|
||||
|
@ -13,8 +14,10 @@ using namespace std;
|
|||
|
||||
class Traite_image {
|
||||
public:
|
||||
const static int SENSITIVITY_VALUE = 40;
|
||||
const static int BLUR_SIZE = 10;
|
||||
const static int THRESHOLD_DETECT_SENSITIVITY = 10;
|
||||
const static int BLUR_SIZE = 5;
|
||||
const static int THRESHOLD_MOV = 5;
|
||||
const static int crop_ratio = 8;
|
||||
|
||||
|
||||
Mat prev;
|
||||
|
@ -33,10 +36,22 @@ class Traite_image {
|
|||
image_transport::Subscriber sub;
|
||||
|
||||
|
||||
Traite_image() : n("~"),it(n) {
|
||||
pub_img = it.advertise("/image_out", 1);
|
||||
pub_cmd = n.advertise<geometry_msgs::Twist>("/vrep/drone/cmd_vel", 1);
|
||||
sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed"));
|
||||
Traite_image(bool sim) : n("~"),it(n) {
|
||||
String img_out, cmd_out, img_in;
|
||||
if (!sim) {
|
||||
img_out = "/image_out";
|
||||
cmd_out = "/bebop/cmd_vel";
|
||||
img_in = "/bebop/image_raw";
|
||||
}
|
||||
else
|
||||
{
|
||||
img_out = "/image_out";
|
||||
cmd_out = "/vrep/drone/cmd_vel";
|
||||
img_in = "/usb_cam/image_raw";
|
||||
}
|
||||
pub_img = it.advertise(img_out, 1);
|
||||
pub_cmd = n.advertise<geometry_msgs::Twist>(cmd_out, 1);
|
||||
sub = it.subscribe(img_in, 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed"));
|
||||
}
|
||||
|
||||
|
||||
|
@ -67,7 +82,6 @@ class Traite_image {
|
|||
|
||||
Mat next_stab;
|
||||
stabiliseImg(prev, next, next_stab);
|
||||
int crop_ratio = 6;
|
||||
float crop_x = next_stab.size().width/crop_ratio;
|
||||
float crop_y = next_stab.size().height/crop_ratio;
|
||||
float crop_w = next_stab.size().width*(1-2.0/crop_ratio);
|
||||
|
@ -75,7 +89,7 @@ class Traite_image {
|
|||
Rect myROI(crop_x, crop_y, crop_w, crop_h);
|
||||
Mat next_stab_cropped = next_stab(myROI);
|
||||
Mat prev_cropped = prev(myROI);
|
||||
searchForMovement(prev_cropped, next_stab_cropped, output);
|
||||
searchForMovementOptFlow(prev_cropped, next_stab_cropped, output);
|
||||
|
||||
|
||||
pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
|
||||
|
@ -142,10 +156,10 @@ class Traite_image {
|
|||
// Subtract the 2 last frames and threshold them
|
||||
Mat thres;
|
||||
absdiff(prev_grey,cur_grey,thres);
|
||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
||||
threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
// Blur to eliminate noise
|
||||
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE));
|
||||
threshold(thres, thres, SENSITIVITY_VALUE, 255, THRESH_BINARY);
|
||||
threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
|
||||
//notice how we use the '&' operator for objectDetected and output. This is because we wish
|
||||
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
||||
|
@ -186,6 +200,57 @@ class Traite_image {
|
|||
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
||||
}
|
||||
|
||||
void searchForMovementOptFlow(Mat prev, Mat cur, Mat &output){
|
||||
Mat cur_grey, prev_grey;
|
||||
cur.copyTo(output);
|
||||
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
||||
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
||||
|
||||
Mat flow;
|
||||
calcOpticalFlowFarneback(prev_grey, cur_grey, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
|
||||
vector<Mat> flow_coord(2);
|
||||
Mat flow_norm, angle;
|
||||
split(flow, flow_coord);
|
||||
cartToPolar(flow_coord[0], flow_coord[1], flow_norm, angle);
|
||||
|
||||
//threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
// Blur to eliminate noise
|
||||
blur(flow_norm, flow_norm, Size(BLUR_SIZE, BLUR_SIZE));
|
||||
threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
flow_norm.convertTo(flow_norm, CV_8U);
|
||||
|
||||
Mat temp;
|
||||
flow_norm.copyTo(temp);
|
||||
//these two vectors needed for output of findContours
|
||||
vector< vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
//find contours of filtered image using openCV findContours function
|
||||
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
||||
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
||||
|
||||
if(contours.size()>0){ //if contours vector is not empty, we have found some objects
|
||||
//the largest contour is found at the end of the contours vector
|
||||
//we will simply assume that the biggest contour is the object we are looking for.
|
||||
vector< vector<Point> > largestContourVec;
|
||||
largestContourVec.push_back(contours.at(contours.size()-1));
|
||||
//make a bounding rectangle around the largest contour then find its centroid
|
||||
//this will be the object's final estimated position.
|
||||
objectBoundingRectangle = boundingRect(largestContourVec.at(0));
|
||||
}
|
||||
//make some temp x and y variables so we dont have to type out so much
|
||||
int x = objectBoundingRectangle.x;
|
||||
int y = objectBoundingRectangle.y;
|
||||
int width = objectBoundingRectangle.width;
|
||||
int height = objectBoundingRectangle.height;
|
||||
|
||||
//draw a rectangle around the object
|
||||
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2);
|
||||
|
||||
//write the position of the object to the screen
|
||||
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
||||
|
||||
}
|
||||
|
||||
inline bool isFlowCorrect(Point2f u)
|
||||
{
|
||||
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
|
||||
|
@ -199,11 +264,11 @@ class Traite_image {
|
|||
|
||||
geometry_msgs::Twist twist = geometry_msgs::Twist();
|
||||
|
||||
if(centre_rect.x < centre_image.x)
|
||||
if(centre_rect.x < centre_image.x-THRESHOLD_MOV)
|
||||
{
|
||||
twist.angular.z = 0.2;
|
||||
}
|
||||
else if(centre_rect.x > centre_image.x)
|
||||
else if(centre_rect.x > centre_image.x+THRESHOLD_MOV)
|
||||
{
|
||||
twist.angular.z = -0.2;
|
||||
}
|
||||
|
@ -215,8 +280,9 @@ class Traite_image {
|
|||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
ros::init(argc, argv, "test_opencv");
|
||||
Traite_image dataset=Traite_image();
|
||||
ros::init(argc, argv, "Papillon");
|
||||
bool sim = false;
|
||||
Traite_image dataset=Traite_image(sim);
|
||||
ros::spin();
|
||||
|
||||
return 0;
|
||||
|
|
Loading…
Reference in a new issue