diff --git a/src/papillon.cpp b/src/papillon.cpp index 5062328..626d510 100644 --- a/src/papillon.cpp +++ b/src/papillon.cpp @@ -17,11 +17,17 @@ class Traite_image { const static int THRESHOLD_DETECT_SENSITIVITY = 10; const static int BLUR_SIZE = 5; const static int THRESHOLD_MOV = 5; + const static int MOVEMENT_THRES = 0.1; Mat prev; Mat last_T; bool first = true; + + // Features vectors + vector prev_ftr, cur_ftr; + + // Downsize factor int resize_f = 2; int theObject[2] = {0,0}; @@ -72,7 +78,8 @@ class Traite_image { Rect myROI(next_stab.size().width/8, next_stab.size().height/8, next_stab.size().width*3/4, next_stab.size().height*3/4); Mat next_stab_cropped = next_stab(myROI); Mat prev_cropped = prev(myROI); - searchForMovementOptFlow(prev_cropped, next_stab_cropped, output); + trackingOptFlow(prev_cropped, next_stab_cropped, output); + //searchForMovementOptFlow(prev_cropped, next_stab_cropped, output); pub_img.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg()); @@ -109,14 +116,16 @@ class Traite_image { calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err); // weed out bad matches + prev_ftr.clear(); + cur_ftr.clear(); for(size_t i=0; i < status.size(); i++) { if(status[i]) { - prev_corner2.push_back(prev_corner[i]); - cur_corner2.push_back(cur_corner[i]); + prev_ftr.push_back(prev_corner[i]); + cur_ftr.push_back(cur_corner[i]); } } - Mat T = estimateRigidTransform(prev_corner2, cur_corner2, true); // false = rigid transform, no scaling/shearing + Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing if(T.data == NULL) { last_T.copyTo(T); @@ -239,59 +248,40 @@ class Traite_image { } - void trackingOptFlow(Mat prev, Mat cur, Mat &output) { - Mat cur_grey, prev_grey; - cur.copyTo(output); - cvtColor(prev, prev_grey, COLOR_BGR2GRAY); - cvtColor(cur, cur_grey, COLOR_BGR2GRAY); + void warpPoints(vector p, vector &p_warp, Mat T, bool invert=false) { + if(invert) + invertAffineTransform(T, T); - Mat flow; - calcOpticalFlowFarneback(prev_grey, cur_grey, flow, 0.5, 3, 15, 3, 5, 1.2, 0); - vector flow_coord(2); - Mat flow_norm, angle; - split(flow, flow_coord); - cartToPolar(flow_coord[0], flow_coord[1], flow_norm, angle); + p_warp.clear(); + for(size_t i=0; i < p.size(); ++i) { + Mat src(3/*rows*/,1 /* cols */,CV_64F); - //threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); - // Blur to eliminate noise - blur(flow_norm, flow_norm, Size(BLUR_SIZE, BLUR_SIZE)); - threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY); - flow_norm.convertTo(flow_norm, CV_8U); + src.at(0,0)=p[i].x; + src.at(1,0)=p[i].y; + src.at(2,0)=1.0; - bool objectDetected = false; - Mat temp; - flow_norm.copyTo(temp); - //these two vectors needed for output of findContours - vector< vector > contours; - vector hierarchy; - //find contours of filtered image using openCV findContours function - //findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours - findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours - - //if contours vector is not empty, we have found some objects - if(contours.size()>0)objectDetected=true; - else objectDetected = false; - - if(objectDetected){ - //the largest contour is found at the end of the contours vector - //we will simply assume that the biggest contour is the object we are looking for. - vector< vector > largestContourVec; - largestContourVec.push_back(contours.at(contours.size()-1)); - //make a bounding rectangle around the largest contour then find its centroid - //this will be the object's final estimated position. - objectBoundingRectangle = boundingRect(largestContourVec.at(0)); + Mat dst = T*src; //USE MATRIX ALGEBRA + p_warp.push_back(Point2f(dst.at(0,0),dst.at(1,0))); } - //make some temp x and y variables so we dont have to type out so much - int x = objectBoundingRectangle.x; - int y = objectBoundingRectangle.y; - int width = objectBoundingRectangle.width; - int height = objectBoundingRectangle.height; + } - //draw a rectangle around the object - rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2); + void trackingOptFlow(Mat prev, Mat cur, Mat &output) { + vector curc_stab; + Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing + ROS_INFO("ready to warp"); + warpPoints(cur_ftr, curc_stab, T, true); + ROS_INFO("warped"); - //write the position of the object to the screen - putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2); + vector objects; + for(size_t i=0; i < prev_ftr.size(); ++i) { + float flow_norm = norm(prev_ftr[i] - cur_ftr[i]) / prev.size().height; + if(flow_norm > MOVEMENT_THRES) + objects.push_back(cur_ftr[i]); + } + + for(size_t i=0; i < objects.size(); ++i) { + circle(output, objects[i], 5, Scalar(0, 200, 0), 1); + } } inline bool isFlowCorrect(Point2f u)