Optical flow tracking and recursive stabilisation on the way
This commit is contained in:
parent
a488dbeec2
commit
90f55e89cd
1 changed files with 35 additions and 128 deletions
163
src/papillon.cpp
163
src/papillon.cpp
|
@ -17,18 +17,24 @@ class Traite_image {
|
|||
const static int THRESHOLD_DETECT_SENSITIVITY = 10;
|
||||
const static int BLUR_SIZE = 5;
|
||||
const static int THRESHOLD_MOV = 5;
|
||||
const static int MOVEMENT_THRES = 0.1;
|
||||
constexpr static float MOVEMENT_THRES = 0.1;
|
||||
|
||||
constexpr static float FLOW_MIN_QUAL = 0.01;
|
||||
const static int FLOW_MIN_DIST = 20;
|
||||
|
||||
|
||||
Mat prev;
|
||||
Mat last_T;
|
||||
|
||||
// Stabilisation transformation matrices
|
||||
Mat T, last_T;
|
||||
|
||||
bool first = true;
|
||||
|
||||
// Features vectors
|
||||
vector <Point2f> prev_ftr, cur_ftr;
|
||||
|
||||
// Downsize factor
|
||||
int resize_f = 2;
|
||||
int resize_f = 1;
|
||||
|
||||
int theObject[2] = {0,0};
|
||||
Rect objectBoundingRectangle = Rect(0,0,0,0);
|
||||
|
@ -75,10 +81,10 @@ class Traite_image {
|
|||
|
||||
Mat next_stab;
|
||||
stabiliseImg(prev, next, next_stab);
|
||||
Rect myROI(next_stab.size().width/8, next_stab.size().height/8, next_stab.size().width*3/4, next_stab.size().height*3/4);
|
||||
Mat next_stab_cropped = next_stab(myROI);
|
||||
Mat prev_cropped = prev(myROI);
|
||||
trackingOptFlow(prev_cropped, next_stab_cropped, output);
|
||||
trackingOptFlow(prev, next_stab, next_stab);
|
||||
Mat next_stab2;
|
||||
stabiliseImg(prev, next, next_stab2);
|
||||
trackingOptFlow(prev, next_stab2, output);
|
||||
//searchForMovementOptFlow(prev_cropped, next_stab_cropped, output);
|
||||
|
||||
|
||||
|
@ -112,7 +118,7 @@ class Traite_image {
|
|||
vector <uchar> status;
|
||||
vector <float> err;
|
||||
|
||||
goodFeaturesToTrack(prev_grey, prev_corner, 200, 0.01, 30);
|
||||
goodFeaturesToTrack(prev_grey, prev_corner, 200, FLOW_MIN_QUAL, FLOW_MIN_DIST);
|
||||
calcOpticalFlowPyrLK(prev_grey, cur_grey, prev_corner, cur_corner, status, err);
|
||||
|
||||
// weed out bad matches
|
||||
|
@ -125,12 +131,12 @@ class Traite_image {
|
|||
}
|
||||
}
|
||||
|
||||
Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
||||
T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
||||
|
||||
if(T.data == NULL) {
|
||||
if(T.data == NULL)
|
||||
last_T.copyTo(T);
|
||||
}
|
||||
T.copyTo(last_T);
|
||||
else
|
||||
T.copyTo(last_T);
|
||||
|
||||
Mat cur2;
|
||||
|
||||
|
@ -139,115 +145,6 @@ class Traite_image {
|
|||
cur2.copyTo(output);
|
||||
}
|
||||
|
||||
void searchForMovement(Mat prev, Mat cur, Mat &output){
|
||||
Mat cur_grey, prev_grey;
|
||||
cur.copyTo(output);
|
||||
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
||||
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
||||
|
||||
// Subtract the 2 last frames and threshold them
|
||||
Mat thres;
|
||||
absdiff(prev_grey,cur_grey,thres);
|
||||
threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
// Blur to eliminate noise
|
||||
blur(thres, thres, Size(BLUR_SIZE, BLUR_SIZE));
|
||||
threshold(thres, thres, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
|
||||
//notice how we use the '&' operator for objectDetected and output. This is because we wish
|
||||
//to take the values passed into the function and manipulate them, rather than just working with a copy.
|
||||
//eg. we draw to the output to be displayed in the main() function.
|
||||
bool objectDetected = false;
|
||||
Mat temp;
|
||||
thres.copyTo(temp);
|
||||
//these two vectors needed for output of findContours
|
||||
vector< vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
//find contours of filtered image using openCV findContours function
|
||||
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
||||
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
||||
|
||||
//if contours vector is not empty, we have found some objects
|
||||
if(contours.size()>0)objectDetected=true;
|
||||
else objectDetected = false;
|
||||
|
||||
if(objectDetected){
|
||||
//the largest contour is found at the end of the contours vector
|
||||
//we will simply assume that the biggest contour is the object we are looking for.
|
||||
vector< vector<Point> > largestContourVec;
|
||||
largestContourVec.push_back(contours.at(contours.size()-1));
|
||||
//make a bounding rectangle around the largest contour then find its centroid
|
||||
//this will be the object's final estimated position.
|
||||
objectBoundingRectangle = boundingRect(largestContourVec.at(0));
|
||||
}
|
||||
//make some temp x and y variables so we dont have to type out so much
|
||||
int x = objectBoundingRectangle.x;
|
||||
int y = objectBoundingRectangle.y;
|
||||
int width = objectBoundingRectangle.width;
|
||||
int height = objectBoundingRectangle.height;
|
||||
|
||||
//draw a rectangle around the object
|
||||
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2);
|
||||
|
||||
//write the position of the object to the screen
|
||||
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
||||
}
|
||||
|
||||
void searchForMovementOptFlow(Mat prev, Mat cur, Mat &output){
|
||||
Mat cur_grey, prev_grey;
|
||||
cur.copyTo(output);
|
||||
cvtColor(prev, prev_grey, COLOR_BGR2GRAY);
|
||||
cvtColor(cur, cur_grey, COLOR_BGR2GRAY);
|
||||
|
||||
Mat flow;
|
||||
calcOpticalFlowFarneback(prev_grey, cur_grey, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
|
||||
vector<Mat> flow_coord(2);
|
||||
Mat flow_norm, angle;
|
||||
split(flow, flow_coord);
|
||||
cartToPolar(flow_coord[0], flow_coord[1], flow_norm, angle);
|
||||
|
||||
//threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
// Blur to eliminate noise
|
||||
blur(flow_norm, flow_norm, Size(BLUR_SIZE, BLUR_SIZE));
|
||||
threshold(flow_norm, flow_norm, THRESHOLD_DETECT_SENSITIVITY, 255, THRESH_BINARY);
|
||||
flow_norm.convertTo(flow_norm, CV_8U);
|
||||
|
||||
bool objectDetected = false;
|
||||
Mat temp;
|
||||
flow_norm.copyTo(temp);
|
||||
//these two vectors needed for output of findContours
|
||||
vector< vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
//find contours of filtered image using openCV findContours function
|
||||
//findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );// retrieves all contours
|
||||
findContours(temp,contours,hierarchy,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE );// retrieves external contours
|
||||
|
||||
//if contours vector is not empty, we have found some objects
|
||||
if(contours.size()>0)objectDetected=true;
|
||||
else objectDetected = false;
|
||||
|
||||
if(objectDetected){
|
||||
//the largest contour is found at the end of the contours vector
|
||||
//we will simply assume that the biggest contour is the object we are looking for.
|
||||
vector< vector<Point> > largestContourVec;
|
||||
largestContourVec.push_back(contours.at(contours.size()-1));
|
||||
//make a bounding rectangle around the largest contour then find its centroid
|
||||
//this will be the object's final estimated position.
|
||||
objectBoundingRectangle = boundingRect(largestContourVec.at(0));
|
||||
}
|
||||
//make some temp x and y variables so we dont have to type out so much
|
||||
int x = objectBoundingRectangle.x;
|
||||
int y = objectBoundingRectangle.y;
|
||||
int width = objectBoundingRectangle.width;
|
||||
int height = objectBoundingRectangle.height;
|
||||
|
||||
//draw a rectangle around the object
|
||||
rectangle(output, Point(x,y), Point(x+width, y+height), Scalar(0, 255, 0), 2);
|
||||
|
||||
//write the position of the object to the screen
|
||||
putText(output,"Tracking object at (" + intToString(x)+","+intToString(y)+")",Point(x,y),1,1,Scalar(255,0,0),2);
|
||||
|
||||
}
|
||||
|
||||
void warpPoints(vector<Point2f> p, vector<Point2f> &p_warp, Mat T, bool invert=false) {
|
||||
if(invert)
|
||||
invertAffineTransform(T, T);
|
||||
|
@ -266,17 +163,27 @@ class Traite_image {
|
|||
}
|
||||
|
||||
void trackingOptFlow(Mat prev, Mat cur, Mat &output) {
|
||||
vector <Point2f> curc_stab;
|
||||
cur.copyTo(output);
|
||||
vector <Point2f> cur_ftr_stab;
|
||||
|
||||
Mat T = estimateRigidTransform(prev_ftr, cur_ftr, true); // false = rigid transform, no scaling/shearing
|
||||
ROS_INFO("ready to warp");
|
||||
warpPoints(cur_ftr, curc_stab, T, true);
|
||||
ROS_INFO("warped");
|
||||
if(T.data == NULL)
|
||||
last_T.copyTo(T);
|
||||
else
|
||||
T.copyTo(last_T);
|
||||
|
||||
warpPoints(cur_ftr, cur_ftr_stab, T, true);
|
||||
|
||||
vector <Point2f> objects;
|
||||
for(size_t i=0; i < prev_ftr.size(); ++i) {
|
||||
float flow_norm = norm(prev_ftr[i] - cur_ftr[i]) / prev.size().height;
|
||||
if(flow_norm > MOVEMENT_THRES)
|
||||
objects.push_back(cur_ftr[i]);
|
||||
float flow_norm = norm(prev_ftr[i] - cur_ftr_stab[i]) / prev.size().height;
|
||||
line(output, prev_ftr[i], cur_ftr[i], Scalar(200,0,0),1);
|
||||
line(output, prev_ftr[i], cur_ftr_stab[i], Scalar(0,200,0),1);
|
||||
if(flow_norm > MOVEMENT_THRES) {
|
||||
objects.push_back(cur_ftr_stab[i]);
|
||||
prev_ftr.erase(prev_ftr.begin() + i);
|
||||
cur_ftr.erase(cur_ftr.begin() + i);
|
||||
}
|
||||
}
|
||||
|
||||
for(size_t i=0; i < objects.size(); ++i) {
|
||||
|
|
Loading…
Reference in a new issue