diff --git a/CMakeLists.txt b/CMakeLists.txt
new file mode 100644
index 0000000..9ed17ae
--- /dev/null
+++ b/CMakeLists.txt
@@ -0,0 +1,30 @@
+cmake_minimum_required(VERSION 2.8.3)
+project(papillon)
+
+find_package(catkin REQUIRED COMPONENTS
+ roscpp
+ std_msgs
+ image_transport
+ cv_bridge
+)
+find_package(OpenCV)
+
+catkin_package(CATKIN_DEPENDS
+ roscpp
+ std_msgs
+ image_transport
+ cv_bridge
+)
+
+include_directories (${catkin_INCLUDE_DIRS})
+
+add_executable (papillon src/papillon.cpp)
+target_link_libraries(papillon ${catkin_LIBRARIES})
+set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${OpenCV_INCLUDE_DIRS})
+set_property (TARGET papillon APPEND PROPERTY INCLUDE_DIRECTORIES ${catkin_INCLUDE_DIRS})
+set_property (TARGET papillon APPEND PROPERTY LINK_LIBRARIES ${OpenCV_LIBRARIES})
+
+
+install(TARGETS papillon DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})
+
+add_definitions(-Wall -std=c++11)
diff --git a/package.xml b/package.xml
new file mode 100644
index 0000000..7ecb2ec
--- /dev/null
+++ b/package.xml
@@ -0,0 +1,60 @@
+
+
+ papillon
+ 0.0.0
+ Papillon : les drones font la chenille
+
+
+
+
+ Goulven
+ JC
+
+
+
+
+
+ TODO
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ catkin
+ roscpp
+ std_msgs
+ image_transport
+ cv_bridge
+ roscpp
+ std_msgs
+ image_transport
+ cv_bridge
+
+
+
+
+
+
+
+
+
diff --git a/src/papillon.cpp b/src/papillon.cpp
new file mode 100644
index 0000000..aea0058
--- /dev/null
+++ b/src/papillon.cpp
@@ -0,0 +1,208 @@
+#include "ros/ros.h"
+#include
+#include
+#include
+
+#include
+
+#include
+
+using namespace cv;
+using namespace std;
+
+class Traite_image {
+ public:
+ Mat prev;
+ bool first = true;
+ int resize_f = 8;
+
+ ros::NodeHandle n;
+
+ image_transport::ImageTransport it;
+ image_transport::Publisher pub;
+ image_transport::Subscriber sub;
+
+
+ Traite_image() : n("~"),it(n) {
+ pub = it.advertise("/image_out", 1);
+ sub = it.subscribe("/usb_cam/image_raw", 1, [this](const sensor_msgs::ImageConstPtr& img) -> void { this->on_image(img);},ros::VoidPtr(),image_transport::TransportHints("compressed"));
+ }
+
+
+ // This processes an image and publishes the result.
+ void on_image(const sensor_msgs::ImageConstPtr& msg) {
+
+ cv_bridge::CvImageConstPtr bridge_input;
+ try {
+ bridge_input = cv_bridge::toCvShare(msg,sensor_msgs::image_encodings::RGB8);
+ }
+ catch (Exception& e) {
+ std::ostringstream errstr;
+ errstr << "cv_bridge exception caught: " << e.what();
+ return;
+ }
+
+ //Mat& input = const_cast(bridge_input->image);
+ const Mat& input = bridge_input->image;
+ Mat next;
+ resize(input, next, Size(input.size().width/resize_f, input.size().height/resize_f));
+ cvtColor(next, next, CV_BGR2GRAY);
+ Mat output; // (input.rows, input.cols, CV_32FC2);
+ ROS_INFO("got input");
+ if (first) {
+ prev = next.clone();
+ first = false;
+ ROS_INFO("first done");
+ }
+
+ //unsigned int size = input.rows * input.cols * 3;
+ //unsigned char* begin_input = (unsigned char*)(input.data);
+ //unsigned char* end_input = (unsigned char*)(input.data) + size;
+ //unsigned char* out = (unsigned char*)(output.data);
+ //unsigned char* in = begin_input;
+
+ // This is an efficient way to process each channel in each pixel,
+ // with an iterator taste.
+ //while(in != end_input) {
+ // *(out++) = *(ptr_prev) - *(in);
+ // *(ptr_prev++) = *(in++);
+ //}
+
+ Mat_ flow;
+ Ptr tvl1 = createOptFlow_DualTVL1();
+
+ tvl1->calc(prev, next, flow);
+
+ drawOpticalFlow(flow, output);
+
+ pub.publish(cv_bridge::CvImage(msg->header, "rgb8", output).toImageMsg());
+ // bridge_input is handled by a smart-pointer. No explicit delete needed.
+
+ ROS_INFO("pub");
+
+ prev = next.clone();
+ }
+
+ inline bool isFlowCorrect(Point2f u)
+ {
+ return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
+ }
+
+ Vec3b computeColor(float fx, float fy)
+ {
+ static bool first = true;
+
+ // relative lengths of color transitions:
+ // these are chosen based on perceptual similarity
+ // (e.g. one can distinguish more shades between red and yellow
+ // than between yellow and green)
+ const int RY = 15;
+ const int YG = 6;
+ const int GC = 4;
+ const int CB = 11;
+ const int BM = 13;
+ const int MR = 6;
+ const int NCOLS = RY + YG + GC + CB + BM + MR;
+ static Vec3i colorWheel[NCOLS];
+
+ if (first)
+ {
+ int k = 0;
+
+ for (int i = 0; i < RY; ++i, ++k)
+ colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
+
+ for (int i = 0; i < YG; ++i, ++k)
+ colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
+
+ for (int i = 0; i < GC; ++i, ++k)
+ colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
+
+ for (int i = 0; i < CB; ++i, ++k)
+ colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
+
+ for (int i = 0; i < BM; ++i, ++k)
+ colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
+
+ for (int i = 0; i < MR; ++i, ++k)
+ colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
+
+ first = false;
+ }
+
+ const float rad = sqrt(fx * fx + fy * fy);
+ const float a = atan2(-fy, -fx) / (float)CV_PI;
+
+ const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
+ const int k0 = static_cast(fk);
+ const int k1 = (k0 + 1) % NCOLS;
+ const float f = fk - k0;
+
+ Vec3b pix;
+
+ for (int b = 0; b < 3; b++)
+ {
+ const float col0 = colorWheel[k0][b] / 255.f;
+ const float col1 = colorWheel[k1][b] / 255.f;
+
+ float col = (1 - f) * col0 + f * col1;
+
+ if (rad <= 1)
+ col = 1 - rad * (1 - col); // increase saturation with radius
+ else
+ col *= .75; // out of range
+
+ pix[2 - b] = static_cast(255.f * col);
+ }
+
+ return pix;
+ }
+
+ void drawOpticalFlow(const Mat_& flow, Mat& dst, float maxmotion = -1)
+ {
+ dst.create(flow.size(), CV_8UC3);
+ dst.setTo(Scalar::all(0));
+
+ // determine motion range:
+ float maxrad = maxmotion;
+
+ if (maxmotion <= 0)
+ {
+ maxrad = 1;
+ for (int y = 0; y < flow.rows; ++y)
+ {
+ for (int x = 0; x < flow.cols; ++x)
+ {
+ Point2f u = flow(y, x);
+
+ if (!isFlowCorrect(u))
+ continue;
+
+ maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
+ }
+ }
+ }
+
+ for (int y = 0; y < flow.rows; ++y)
+ {
+ for (int x = 0; x < flow.cols; ++x)
+ {
+ Point2f u = flow(y, x);
+
+ if (isFlowCorrect(u))
+ dst.at(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
+ }
+ }
+ }
+
+};
+
+
+int main(int argc, char **argv)
+{
+ ros::init(argc, argv, "test_opencv");
+ Traite_image dataset=Traite_image();
+ ros::spin();
+
+ return 0;
+}