using Plots using DSP using CSV pyplot() # Parameters filename = joinpath(@__DIR__, "data", "walk.csv") # input file h = 1/22 # sample time orders = [ (title="quadratique", order=2, sizes=5:2:11), (title="cubique", order=3, sizes=5:2:11), (title="big_quadra", order=2, sizes=11:10:51) ] function savgol(size::Int64, poly_order::Int64, deriv::Int64=0, delta::Float64=1.0, conv::Bool=false) half_size, rem = divrem(size, 2) if rem == 0 throw(ArgumentError("size must be odd.")) end M = [-half_size:half_size;] .^ [0:poly_order;]'; y = zeros(poly_order+1)'; y[deriv+1] = factorial(deriv) / delta^deriv; scal = y*inv(M'*M)*M' if conv scal = scal[end:-1:1] end scal end error = (CSV.read(filename, header=false) |> Matrix{Float64})[:,2] for order in orders plot( 0:h:(length(error)-1)*h, error, label="erreur mesurée", layout=(2,1), subplot=1, title="Position", xrotation=60, xlabel="Temps (s)", ylabel="Position (m)", reuse=false, size=(1000, 600) ) plot!( subplot=2, title="Vitesse mesurée", xrotation=60, xlabel="Temps (s)", ylabel="Vitesse (\$m.s^{-1}\$)" ) for size in order.sizes filter = savgol(size, order.order, 1, h, true) speed = conv(filter, error)[size:end-size] plot!( size*h/2:h:size*h/2+(length(speed)-1)*h, speed, label=string(order.title, " ", size, " points"), subplot=2 ) end savefig(joinpath(@__DIR__, "results", string("mesure_vitesse_", order.title, ".eps"))) end show()