Implémentation de l'algorithme de knn

This commit is contained in:
Guillaume Courrier 2019-12-17 13:55:33 +01:00
parent dfe200f290
commit b641c5986a
5 changed files with 212 additions and 119 deletions

View file

@ -4,6 +4,8 @@ project(miniprojet)
set(PROJECT_CFLAGS "-Wall -Wextra -Wno-missing-braces -std=c++1z")
find_package(OpenCV REQUIRED)
add_compile_options(-std=c++17)
add_subdirectory(src)
add_subdirectory(examples)
add_subdirectory(jean-luc-collette)

View file

@ -1,13 +1,7 @@
# file(GLOB headers *.hpp)
# file(GLOB lib_files *.cpp)
add_executable(traitement traitement.cpp)
target_link_libraries(traitement ${OpenCV_LIBS})
#add_executable(k_proches_voisins k_proches_voisins.cpp)
#target_link_libraries(k_proches_voisins ${OpenCV_LIBS})
# target_include_directories(blk PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
# target_compile_options (blk PUBLIC -std=c++11 )
find_package(Boost COMPONENTS system filesystem REQUIRED)
# install(TARGETS blk DESTINATION lib )
# install(FILES ${headers} DESTINATION include/${CMAKE_PROJECT_NAME})
add_executable(knn knn.cpp)
target_link_libraries(knn ${OpenCV_LIBS} ${Boost_FILESYSTEM_LIBRARY} ${Boost_SYSTEM_LIBRARY})

View file

@ -1,87 +0,0 @@
#include <map>
#include "math.hpp"
#include <stdexcept>
double distance(math::csignal& v1, math::csignal& v2, int n){
if (v1.size() != v2.size()) {
throw std::runtime_error("les deux vecteurs doivent être de même longueur");
}
double d;
double di;
for (int i=0; i<v1.size(); ++i){
di = std::abs(v1[i] - v2[i]);
di = std::pow(di, n);
d = d + di;
};
return std::pow(d, 1/n);
};
int argmax(std::vector<int>& v){
int arg = 0;
int max = v[0];
for(int i = 1; i < v.size() ; ++i){
if (v[i]>max){
arg = i;
max = v[i];
};
};
return arg;
};
//int main(math::csignal new_vect, std::map< math::csignal, std::string > dico, int k){
int main(int argc, char** argv) {
std::vector<std::pair<double, math::csignal>> k_min;
std::map<math::csignal, std::string> dico;
math::csignal new_vect;
int k;
double d;
int avance = 0;
int arret = 0;
int droite = 0;
int gauche = 0;
int rejet = 0;
std::vector<int> vchoix;
for(auto& ref_vect : dico){
d = distance(new_vect, ref_vect.first);
if (k_min.size() < k ){
k_min.push_back({d, ref_vect.first});
} else if (d < k_min[k-1].first){
k_min.push_back({d, ref_vect.first});
sort(k_min.begin(), k_min.end());
k_min.pop_back();
}
}
for(auto i = k_min.begin(); i != k_min.end(); i++) {
if (dico[k_min[i].second].second == "avance"){
avance = avance + 1
} else if (dico[k_min[i].second].second == "arret"){
arret = arret + 1
} else if (dico[k_min[i].second].second == "droite"){
arret = droite + 1
} else if (dico[k_min[i].second].second == "gauche"){
arret = gauche + 1
} else if (dico[k_min[i].second].second == "rejet"){
arret = rejet + 1
}
}
vchoix.push_back(avance);
vchoix.push_back(arret);
vchoix.push_back(droite);
vchoix.push_back(gauche);
vchoix.push_back(rejet);
int nchoix = argmax(vchoix);
std::string choix;
if (nchoix == 0){
choix = "avance"
} else if (nchoix == 1){
choix = "arret"
} else if (nchoix == 2){
choix = "droite"
} else if (nchoix == 3){
choix = "gauche"
} else if (nchoix == 4){
choix = "rejet"
}
};

139
tests/src/knn.cpp Normal file
View file

@ -0,0 +1,139 @@
#include <map>
#include "math.hpp"
#include <stdexcept>
#include <queue>
#include <opencv2/opencv.hpp>
#include <boost/filesystem.hpp>
#include <iterator>
#include <iostream>
#include <algorithm>
using dataset = std::vector<std::pair<math::csignal, std::string>>;
struct path_leaf_string {
std::string operator()(const boost::filesystem::directory_entry& entry) const
{
return entry.path().leaf().string();
}
};
void read_directory(const std::string& name, std::vector<std::string>& v) {
boost::filesystem::path p(name);
boost::filesystem::directory_iterator start(p);
boost::filesystem::directory_iterator end;
std::transform(start, end, std::back_inserter(v), path_leaf_string());
}
double distance(math::csignal& v1, math::csignal& v2, int n){
if (v1.size() != v2.size()) {
throw std::runtime_error("les deux vecteurs doivent être de même longueur");
}
double d = 0;
auto v1_it = v1.begin();
auto v2_it = v2.begin();
while (v1_it != v1.end()) {
double dist = std::abs(*(v1_it++) - *(v2_it++));
d += std::pow(dist, n);
}
return std::pow(d, 1/n);
};
int argmax(std::vector<int>& v){
int arg = 0;
int max = v[0];
for(int i = 1; i < v.size() ; ++i){
if (v[i]>max){
arg = i;
max = v[i];
};
};
return arg;
};
struct pair_comp {
bool operator()(std::pair<double, std::string> a, std::pair<double, std::string> b) {
if (a.first == b.first) {
return false;
}
if (a.first > b.first) {
return true;
}
return false;
};
};
math::csignal img2desc(std::string filename, int cmax, int threshold) {
cv::Mat img = cv::imread(filename, CV_LOAD_IMAGE_COLOR);
return math::descriptors(img, cmax, threshold);
}
dataset get_data(std::string path, int size, int cmax, int threshold) {
dataset res;
std::vector<std::string> dirs;
read_directory(path, dirs);
for (auto dir: dirs) {
std::vector<std::string> files;
read_directory(path+"/"+dir, files);
std::string label = dir;
int count = 0;
for (int i=0; count<size/4 && i<files.size(); ++i) {
try {
math::csignal d = img2desc(path+"/"+dir+"/"+files[i], cmax, threshold);
res.push_back({d, label});
count++;
} catch (std::length_error& e) {
std::cout << "No contour: image skiped." << std::endl;
}
}
std::cout << res.size() << std::endl;
}
return res;
}
int main(int argc, char** argv) {
int k = 20;
int size = 100;
std::string path;
int cmax = 10;
int threshold = 20;
if (argc > 2) {
path = argv[1];
threshold = atoi(argv[2]);
} else {
std::cout << "Invalid number of arguments" << std::endl;
return 0;
}
dataset references = get_data(path, size, cmax, threshold);
math::csignal sample = img2desc(path+"/arret/arret0199.jpg", cmax, threshold);
std::priority_queue<std::pair<double, std::string>, std::vector<std::pair<double, std::string>>, pair_comp> neighbors;
std::map<std::string, int> labels;
for (auto desc: references) {
double d = distance(desc.first, sample, 1);
neighbors.push({d, desc.second});
}
for (int i=0; i<k; ++i) {
std::pair<double, std::string> nearest = neighbors.top();
neighbors.pop();
labels[nearest.second] += 1;
}
int max = 0;
std::string label;
for (auto val: labels) {
if (val.second > max) {
max = val.second;
label = val.first;
}
}
std::cout << label << std::endl;
};

View file

@ -5,6 +5,7 @@
#include <opencv2/opencv.hpp>
#include <iterator>
#include <cmath>
#include <stdexcept>
namespace math {
@ -284,29 +285,6 @@ namespace math {
return res;
}
csignal descriptors(const contour& cont, int cmax) {
csignal z = cont2sig(cont);
complex zm = mean(z);
csignal tfd = dft(diff(z, zm));
tfd /= z.size();
int cmin = -cmax;
csignal desc = extract(tfd, cmin, cmax);
if (std::abs(desc[desc.size()/2-1]) > std::abs(desc[desc.size()/2+1])) {
std::reverse(desc.begin(), desc.end());
}
double phy = std::arg(desc[desc.size()/2-1]*desc[desc.size()/2+1])/2;
desc *= std::exp(complex(0, -phy));
double theta = std::arg(desc[desc.size()/2+1]);
for (int k=0; k<desc.size(); ++k) {
desc[k] *= std::exp(complex(0, -theta*(k-cmin)));
}
desc /= std::abs(desc[desc.size()/2+1]);
return desc;
}
contour simplify_contour(const contour& cont, int cmax) {
csignal z = cont2sig(cont);
@ -346,4 +324,71 @@ namespace math {
}
return id;
};
csignal descriptors(const cv::Mat& img, int cmax, int threshold) {
std::vector<std::vector<cv::Point>> contours;
cv::Mat binary(img.rows, img.cols, CV_8UC1);
cv::Mat blur_img;
cv::GaussianBlur(img, blur_img, cv::Size(7,7), 1.5, 1.5);
std::vector<cv::Vec4i> hierarchy;
math::filter(img, binary, threshold);
cv::findContours(binary, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
if (contours.size() > 0) {
std::vector<std::vector<cv::Point>> contrs;
int id = max_cont(contours);
csignal z = cont2sig(contours[id]);
complex zm = mean(z);
csignal tfd = dft(diff(z, zm));
tfd /= z.size();
int cmin = -cmax;
csignal desc = extract(tfd, cmin, cmax);
if (std::abs(desc[desc.size()/2-1]) > std::abs(desc[desc.size()/2+1])) {
std::reverse(desc.begin(), desc.end());
}
double phy = std::arg(desc[desc.size()/2-1]*desc[desc.size()/2+1])/2;
desc *= std::exp(complex(0, -phy));
double theta = std::arg(desc[desc.size()/2+1]);
for (int k=0; k<desc.size(); ++k) {
desc[k] *= std::exp(complex(0, -theta*(k-cmin)));
}
desc /= std::abs(desc[desc.size()/2+1]);
return desc;
} else {
throw std::length_error("No contour detected !");
}
}
csignal descriptors(const contour& cont, int cmax) {
csignal z = cont2sig(cont);
complex zm = mean(z);
csignal tfd = dft(diff(z, zm));
tfd /= z.size();
int cmin = -cmax;
csignal desc = extract(tfd, cmin, cmax);
if (std::abs(desc[desc.size()/2-1]) > std::abs(desc[desc.size()/2+1])) {
std::reverse(desc.begin(), desc.end());
}
double phy = std::arg(desc[desc.size()/2-1]*desc[desc.size()/2+1])/2;
desc *= std::exp(complex(0, -phy));
double theta = std::arg(desc[desc.size()/2+1]);
for (int k=0; k<desc.size(); ++k) {
desc[k] *= std::exp(complex(0, -theta*(k-cmin)));
}
desc /= std::abs(desc[desc.size()/2+1]);
return desc;
}
}